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46 Abstract

47 Many structural applications require nonlinear finite element analyses in order to assess response
48 and capacity. Plastic deformations may be accounted for by means of thickness integration or
49 stress resultants. The stress resultant model employed herein is based on Ilyushins’ linear yield
50 criterion for thin shells. The corners present with this criterion are circumvented by means of a
51 simplification, hence, there is no need for multi-surface stress resultant updates. A backward Euler
52 difference is employed in the stress resultant update, and a consistent tangent is used in the New-
53 ton–Raphson iterations on the global equilibrium. Limit points are traversed by means of an orthog-
54 onal trajectory method. The response of compression dominated shells with imperfections typically
55 corresponds to limit point behaviour. For stress resultant plasticity, the nonlinear transition from
56 initial yield to full plasticity in shell bending is missed. Hence, the efficiency obtained by eliminat-
57 ing thickness integration is countered by some inaccuracy in the response simulation. This is
58 investigated by means of comparison with finite element simulations employing integration through
59 thickness (with linear or nonlinear hardening). Both steel and aluminium alloys are considered. In
60 collapse response of slender structures, the straining of the material may be moderate, but the
61 motion may be governed by large rigid body translations and rotations. A way of accounting for
62 this by means of the co-rotated approach is presented. Triangular high-performance facet shell
63 elements are employed. By example computations, the importance of nonlinear geometry contri-
64 butions is illustrated.  2001 Published by Elsevier Science Ltd.
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69 1. Introduction

70 Shell structures are used in many engineering applications due to efficient load
71 carrying capability relative to material volume. Reassessment of the capacity of exist-
72 ing structures reaching their original service life, assessment of structural behaviour
73 during damage scenarios, and residual (post-damage) analyses typically require cal-
74 culations accounting for nonlinear behaviour. For shell structures computations are
75 carried out by means of shell finite elements. In many cases the nonlinear defor-
76 mations of the shell are governed by large rigid body translations and rotations, and
77 moderate strain producing motions. This simplifies the constitutive modelling. The
78 use of rotational degrees of freedom at the shell element nodes needs special con-
79 sideration for large spatial rotations. In the present study the co-rotated formulation
80 is employed [1–6]. With this, the strain producing deformations and the (large) rigid
81 body motion is split, and simplifications in strain description are easily carried out
82 with respect to the co-rotated system. Herein a triangular assumed natural deviatoric
83 strain shell finite element (ANDES) presented by Felippa et al. is used [7,8]. This
84 is a non-conform element satisfying the individual element test [9]. Plasticity is
85 accounted for either by means of integration of stress over the thickness (layer
86 approach), or stress resultants modelling. By the latter approach the yield surfaces
87 become more complicated than in the former. For instance, a layer approach with
88 Mises material (no discontinuities in the yield surface gradient in the plane stress
89 space) corresponds to a stress resultant yield surface with corners (Ilyushin). This
90 requires special considerations in the stress resultant update algorithm. In the present
91 study this yield surface is simplified to a hyperellipse, avoiding the corners at the
92 expense of introducing some inaccuracy in response calculation at inelastic inte-
93 gration points [10–12]. In [13] a stress resultant approach also was employed for
94 determination of capacity of plates.
95 The main objectives with the present investigation are: 1) quantify the inaccuracy
96 of the stress resultant approach, 2) indicate remedies for this, and 3) investigate the
97 effects of large rotations (e.g. when is a rotation large?). The paper is organised as
98 follows. First the shell kinematics are presented. This includes the co-rotated formu-
99 lation and definition of the deformational (strain producing) degrees of freedom.
100 Secondly, variation of the force equilibrium leads to the consistent tangent stiffness.
101 The stress resultant update and its linearization are briefly presented. Finally, several
102 examples of shell problems are analysed and compared to other published simula-
103 tions. Additional simulations and discussions may be obtained from [11,12].

104 2. Shell finite element kinematics

105 Fig. 1 shows the two basic coordinate systems that are used. The global coordinate
106 system is represented by unit vectors I1,I2 and I3. The co-rotated element coordinate
107 system shared by shadow configuration C0n and configuration Cn is represented by
108 unit vectors in1, in

2 and in3. Vectors given in the local co-rotated element coordinate

1
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6

7
8

9 Fig. 1. Shell element kinematics, co-rotated approach.

109 system are marked with a tilde (~). A vector x in global coordinates is transformed
110 into a vector x̃ in the local coordinate system 0 by

111 x̃�T0x T0��
i0

T

1

i0
T

2

i0
T

3
� (1)

112

113 T0 is orthonormal. The rigid body rotation of i0i to i1n is given by

114 in1�R0ni01 R0n�TT
nT0 (2)115

116 where R0n, is the rigid body rotation matrix from position 0 to position n. The Rodrig-
117 ues representation of the rotation matrix is used. The rotation matrix for a rotation
118 q about an axis defined by the unit vector nT=[n1n2n3] is written [14]:

119 R�I�Nsinq�N2(1�cosq) (3)120

121 N�Spin(n)��
0 −n3 n2

n3 0 −n1

−n2 n1 0 � (4)

122

123

124 I is the 3 by 3 identity matrix. Rotation of a vector r0 into r through an angle q
125 about an axis defined by the unit vector n is obtained by:

126 r�Rr0 (5)127

128

1
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129 Consider a body in initial configuration C0 moving to configuration Cn The displace-
130 ment vector is given as the difference between the position vector in configuration
131 C0 and the position vector in configuration Cn.

132 u�rn�r0 (6)133

134

135 The displacement vector is split into a deformational displacement vector and a rigid
136 body displacement vector.

137 u�ur�ud ur�r0n�r0 ud�rn�r0n (7)138

139

140 Introducing subscript c for the arithmetic mean of the coordinates of the points in
141 the element, the position vectors in initial and shadow element configurations may
142 be written as:

143 r0�r0
c�x0 (8)144

145 r0n�r0n
c �x0n�r0

c�uc�R0nX0
146

147 where x0 and x0n are the vectors from the centroid of the element to the point being
148 considered in the C0 configuration and the C0n configuration respectively. Substi-
149 tution of the expressions above into Eq. (7) yields:

150 ud�u�ur�u�(r0n�r0)�u�uc�(R0n�I)x0 (9)151

152

153 The rotation of an element node as it moves from the initial configuration C0 to the
154 deformed configuration Cn is described by the rotation matrix R. The rotation matrix
155 is split into a rigid body rotation tensor R0n and a deformational rotation matrix Rd.

156 R�RdR0n (10)157

158 Rd�RRT
0n�RTT

0Tn (11)159

160

161 The deformational rotation matrix transformed into the local coordinate system
162 shared by configurations C0n and Cn reads

163 R̃d�TnRdTT
n�TnRTT

0 (12)164

165

166 The position of an element node a with initial coordinates r0
a, is defined by the

167 translational displacement ua and the rotational orientation Ra. Together, the set
168 (ua,Ra) for a=1,…N is the nodal displacement vector v̂ “visible” to the other
169 elements. v̂ is interpreted as an array of numbers that defines the position of the
170 deformed element. In order to establish the force vector and tangent stiffness for an
171 element, the deformational vector for the element needs to be established. This vector
172 is denoted ṽd and contains translational and rotational degrees of freedom for each
173 element node ordered as

1
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174 ṽT
d�[ũT

d1q̃
T
d1…ũT

dNq̃T
dN] (13)175

176 N is the number of element nodes for the element being considered. q̃d is obtained
177 from R̃d .

178 3. Equilibrium and tangent stiffness

179 3.1. Equilibrium

180 Balance in virtual work reads

181 dRṽT
df̃e�dvTfext�dvT��∂Rvd

∂v ��Tfe�fext�0 (14)

182 ⇒fe�TTP̃TH̃Tf̃e�fext183

184

185 The transformations are matrices that provide the large rotation effects, and are
186 explained briefly in the following, see [12] for details. In the derivation we first need
187 the variation of the transformation matrix with respect to infinitesimal rotations about
188 the local coordinate axes:

189 dTn�
∂Tn

∂w̃i

dw̃i��
0 dw̃z −dw̃y

−dw̃z 0 dw̃x

dw̃y −dw̃z 0 � �
inT
1

inT
2

inT
3
���Spin(dw̃)Tn (15)

190

191

192 Transformation of Spin (dw̃) to global coordinates reads

193 dTn��Spin(dw̃)Tn��TnSpin(dw)TT
nTn��TnSpin(dw) (16)194

195

196 Spin(dw) is anti-symmetric. Secondly, the rotation matrix R0n rotates a vector
197 from initial configuration to the shadow configuration, hence the variation of the
198 rotation matrix reads

199 dR0n�dTT
nT0�TT

ndT0�dTT
nT0�Spin(dw)TT

nT0�Spin(dw)R0n (17)200

201

202 The variation of a vector expressed in a global frame can be expressed as

203 dx�dRx�dw�x�dRx�Spin(dw)x (18)204

205 where δRx is the variation of the vector in the co-rotated frame, and dw is the vari-
206 ation of the global rotation of the frame. The variation of the co-rotated deformatio-

1
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207 nal displacement vector ud in a co-rotated frame is obtained via the variation of the
208 global deformational displacements with respect to global v, and using Eq. (18) to
209 find the variation of the co-rotated deformational displacements with respect to global
210 v. Eq. (9) states that deformational displacement of an element node a is

211 uda�ua�uc�(R0n�I)x0
a��N

b�1

dabub��N
b�1

1
N

ub�(R0n�I)x0
a (19)

212

213 uc is the displacement vector for the element centroid, and dab is the Kronecker
214 delta, hence

215 uda��N

b�1

Pabub�(R0n�I)x0
a (20)

216 Pab�(dab�
1
N

)I
217

218

219 The variation of global uda with respect to global v is found as

220 duda��N
b�1

Pabdub�dR0nx0
a (21)

221

222

223 Using Eq. (17) we have

224 dR0nx0
a�Spin(dwr)R0nx0

a�Spin(dwr)x0n
a ��Spin(x0n

a )dwr� (22)

225 �Spin(x0n
a )Gdv226

227

228 The matrix G connects the variation of the rigid body rotation of the shell element
229 to the variation of the visible node displacements:

230 dwr�
∂wr

∂vi

∂vi�Gdv��N
b�1

Gbdvb (23)
231

232

233 The matrix G is an element-type dependent matrix. The variation of global ud

234 with respect to global v then reads

235 duda��N
b�1

([Pab0]�Spin(x0n
a )Gb)dvb (24)

236

237 dvb is the global degrees of freedom for node b. Using the relationship uda=xn
a�x0n

a ,
238 we find that the variation of the co-rotated deformational displacement vector with
239 respect to global degrees of freedom is given by

240 dRuda�dRxn
a�dRx0n

a �dRxn
a (25)241

1
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242

243 Since xn
a=R0nx0

a+uda, the variation of global xa
n with respect to global degrees of

244 freedom is given by

245 dxn
a�dR0nx0

a�R0ndx0
a�duda��N

b�1

Pabdub (26)
246

247

248 Substituting xa
n for x in Eq. (18) and solving with respect to dRxa

n yields

249 dRxn
a��N

b�1

Pabdub�Spin(dwr)xn
a��N

b�1

Pabdub�Spin(xn
a)dwr (27)

250 ��N

b�1

([Pab0]�Spin(xn
a)Gb)dvb

251

252

253 Hence, we have the variation of co-rotated deformational displacement vector with
254 respect to global degrees of freedom dRuda=dRxa

n.
255 By starting with the variation of the co-rotated deformational rotations with respect
256 to global degrees of freedom, the variation of the co-rotated deformational (finite)
257 rotations with respect to the co-rotated deformational (infinitesimal) rotations is
258 obtained. The derivation is based on work by Nour–Omid and Rankin [15], and
259 based on a relationship established by Simo [16] and Szwabowicz [17].

260 dRqda�
∂qda

∂wda

dRwda�
∂(Axial(ln(Rda)))

∂wda

∂Rwda�HadRwda (28)
261

262 Ha�
∂qa

∂w�I�
1
2
Spin(qa)�hSpin(qa)2 (29)

263

264 h�

sin
1
2
qa−

1
2
qacos(

1
2
qa)

q2
asin(

1
2
qa)

and qa��qT
aqa�||qb|| (30)

265

266 dRwda�dwa�dwr�dwa�
∂wr

∂vi

dvi�dwa�Gadva (31)
267

268

269 G is defined in Eq. (23). dRwda may now be written as

270 dRwda��N
b�1

(dab[0 I]�Gb)dvb (32)
271

272

273 Introducing Eq. (31) into Eq. (28) yields the final expression for the variation of
274 co-rotated deformational rotation with respect to global degrees of freedom.

1
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275 dRqda�Ha�N
b�1

(dab[0 I]�Gb)dvb (33)
276

277

278 For an element with N nodes, the nodal degrees of freedom are ordered as follows

279 vT�[uT
1 qT

1 … uT
N qT

N] (34)280

281

282 If Eqs. (27) and (33) are ordered accordingly, dRvd (containing both displacements
283 and rotations) may be written as

284 dRvd�H(I�PT�PR)dv�HPdv (35)285

286

287 Matrix P is a nonlinear projector operator that filters out rigid body translation
288 and rotation.
289 The variation of the co-rotated deformational displacement vector has now been
290 found with respect to a set of global degrees of freedom. To enable use of existing
291 linear elements put in the rotating frame, the global system is chosen to be that of
292 the co-rotated element. Thus, Eq. (34) is modified to

293 dRṽd�H̃P̃dṽ (36)294

295

296 Since the visible degrees of freedom are defined in the global coordinate system,
297 the variation needed is dRvd with respect to dv. Taking advantage of the transform-
298 ation between local and global coordinate system, we have

299 dRṽd�H̃P̃Tndv (37)300

301

302 3.2. Tangent stiffness

303 The consistent tangent stiffness is obtained by the variation of the internal force
304 vector fe with respect to the visible degrees of freedom, v:

305 dfe�
∂f
∂v
dv�Ktdv (38)

306

307

308 Using Eq. (14) for fe, Eq. (38) yields:

309 df�dTTP̃TH̃Tf̃e�TTdRP̃TH̃Tf̃e�T TP̃TdRH̃Tf̃e�T TP̃TH̃Tdf̃e (39)

310 �(KGR�KGP�KGM�KMG)dv�KTdv311

312

313 The different terms of the tangent stiffness represent rotational geometric stiffness,

1
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314 projection geometric stiffness, moment correction geometric stiffness, and material
315 stiffness, respectively.
316 The rotational geometric stiffness arises from the variation of the transformation
317 matrix between initial configuration C0 and shadow configuration Cn. As a rigid
318 rotation of a stressed element rotates the stresses, the internal forces change direction
319 to preserve equilibrium.
320 The equilibrium projection geometric stiffness arises from the variation of the
321 projector matrix P̃T, and reflects the variation of the force vector due to variations
322 in the degrees of freedom.
323 The moment correction geometric stiffness arises from variation of the rotation
324 pseudo-vector Jacobian H̃.
325 The following expression for the consistent tangent stiffness is determined:

326 Kt�TT(K̃MG�K̃GM�K̃GR�K̃GP)T�TT(P̃TH̃TK̃eH̃P̃�P̃TM̃P̃�F̃nmG̃ (40)

327 �G̃TF̃T
nP̃)T328

329

330 It should be noted that for linear geometry analysis, only K̃e remains. A detailed
331 derivation of above relationships is given in [6,12].

332 3.3. Elastic-plastic stiffness

333 K̃e represents the material stiffness for the element, and may include plasticity
334 effects. It connects the local deformational dof increment with the local force
335 increment:

336 df̃e�K̃edRṽd (41)337

338

339 The linear version of Ilyushin’s stress resultant yield condition may be written

340 f(ñ,m̃)���N̄
t2

+
4sP̄

�3t3
+

16M̄
t4 ��s0�0 (42)

341

342 N̄�N2
x�N2

y�NxNy�3N2
xy343

344 M̄�M2
x�M2

y�MxMy�3M2
xy345

346 P̄�NxMx�NyMy�0.5NxMy�0.5NyMx�3NxyMxy347

348 s�P̄/abs(P̄)��1349

350

351 For thin shells of Mises material this criterion works well. Denoting the integration
352 point stress resultant vector by s=[ñ,m̃]T the yield criterion is rewritten in quadratic
353 form, see Ibrahimbegovic and Frey [17] and Matthies [18]:

354 f�sTAs�(1�
Hep
sy

)2�0 (43)
355

1
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356 A��
1
n2

0
Ā

s

2�3m0n0

Ā

s

2�3m0n0

Ā
1

m2
0

Ā � Ā��
1 −0.5 0

−0.5 1 0

0 0 3�
357

358 m0�0.25syt2,n0�syt359

360

361 The off-diagonal submatrices in A lead to corners in the yield surface [19–21].
362 Assuming s=0, a hyperellipse is obtained as yield surface. This leads to nonconserva-
363 tive inaccuracies. The maximum error is approximately 12% for balanced membrane
364 and bending loading. Approaching each axis, the error vanish. Utilising an associated
365 flow rule, the backward Euler update of the plastic strain increment reads

366 �ep,n+1��ln+1

∂f
∂sn+1

�e�[�em,��]T (44)
367

368

369 Here n+1 corresponds to the current load step in the global Newton–Raphson
370 equilibrium iteration. A linear isotropic work hardening model is used:

371 sTde�s̄dep⇒dep�2s̄dl s̄��sTAs (45)372

373

374 In the elastic predictor plastic corrector approach applied herein, the stress update
375 is obtained by

376 sn+1�strial�C��p,n+1�Q̄−1strial Q̄�[I�2�lCA]377

378 C��tD 0

0
t3

12
D�D�

E
1−v2�

1 v 0

v 1 0

0 0
1−v
2
�

379

380

381 The discrete yield condition fn+1 now depends only on �l. Solving for f(�ln+1)
382 (Newton–Raphson) the stress update is directly obtained. The consistent material
383 tangent for an integration point in the plane reads:

384 ds�[H�
HggTH
gTHg+b

]de�Ctde (46)
385

386 H−1�C−1�2�lA, g�2As387

388

1
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389 3.4. Shell element and solution procedure

390 Triangular facet finite elements with six dof at each node is employed. The pro-
391 cedure for construction of the stiffness is presented by Militello and Felippa [9]. The
392 element stiffness is split into a basic and higher order contribution. The basic stiffness
393 is derived from a constant stress in the element doing virtual work on element bound-
394 ary displacements described in terms of the visible degrees of freedom:

395 Kv�(Kb�Kh)v�f (47)396

397

398 With this approach, the individual element (patch) test is satisfied. The higher
399 order stiffness is derived by means assumed natural deviatoric strains (ANDES),
400 with local (invisible) dof for bending from element curvature interpolation and from
401 the drilling dof for the membrane part.
402 The balance equation between internal and external forces for the assembled
403 element model reads

404 r(v,l)�f(v)�p(l)�0 (48)405

406

407 The external loads are hence written as a function of a time like parameter l.
408 Advancing from state n to n+1 is carried out by means of a corresponding load
409 increment followed by Newton–Rapshon iterations on the residual, with the orthog-
410 onal trajectory method by Fried [22] employed in order to traverse limit points.
411 The update of the global displacement and rotation is obtained as follows displace-
412 ments:

413 displacements: v:�v��v (49)414

415 rotations: R:�R(�w)R (50)416

417

418 4. Numerical simulations

419 In the following, some cases are analysed in order to investigate accuracy of the
420 simplified plasticity model. Cases with loading dominated by either membrane or
421 bending conditions should be accurate, whereas cases with combined load carrying
422 may be nonconservative. Other numerical studies with the present formulation may
423 be found in [11,12].

424 4.1. Three-point bending of plates

425 4.1.1. Steel material
426 A rectangular steel plate of elastic-perfectly plastic material with yield stress 400
427 MPa is analysed with two different sets of boundary conditions. The first set has

1

1 TWST: thin-walled structures - ELSEVIER2 03-05-01 08:54:21 Rev 16.02x TWST$$568P



1

2

3

1 122 B. Skallerud et al. / Thin-Walled Structures �� (2001) ��–��
3

428 displacement restraints on two opposite edges (the two other unrestrained). This
429 boundary condition promotes a nonlinear membrane force effects in the plate as the
430 out-of-plane deflection increases. The other boundary set has axially free motion at
431 two opposite edges, the rest of the boundary conditions are as described above. With
432 this latter boundary, the load is carried by dominating bending moments. A line load
433 at midplate is applied, hence a three-point bending load system is obtained. The
434 plate was analysed with an in-house program Cfem [6,12] and ABAQUS. Cfem
435 employs the stress resultant plasticity model and the kinematical description given
436 in above sections, whereas ABAQUS employs through thickness stress integration,
437 i.e. a layer approach. With this one obtains comparison between the two plasticity
438 models and two different descriptions of nonlinear geometry effects. An additional
439 feature with ABAQUS is that the account of large deformation can be easily switched
440 off, i.e. having a linear geometry description.
441 Fig. 2a illustrates the two simulations for axially fixed boundary conditions. For
442 this thin plate (2000×750×50 mm, i.e. L/t=40) a strong membrane force evolves.
443 There is a transition region where the two simulations deviates slightly, but the
444 overall correspondence is very good. Fig. 2b depicts the simulations for axially unre-
445 strained boundary conditions. Due to not accounting for first fibre yielding with the
446 stress resultant model there is a small deviation in the elastic–plastic transition, else-
447 where the correspondence is very good.

448 4.1.2. Aluminium materials
449 In the steel material simulations the stress–strain curve is assumed to be bilinear.
450 In order to investigate how the stress resultant modelling performs for nonlinear
451 stress strain curves, an aluminium alloy (Al 2024) of tempers T3 and T4 was analysed.
452 The stress strain curves are plotted in Fig. 3. The linear hardening simplification for
453 the stress resultant model is indicated. Exactly the same geometry and boundary
454 conditions as employed for the steel plate are used here.

11
12

13
14

15 Fig. 2. Steel plate in three-point bending. (a) In-plane restrained plate, (b) in-plane unrestrained plate.

1
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18

19
20

21 Fig. 3. Stress–strain vurves for aluminium 2024. (a) Temper T3, (b) temper T4.

455 For the axially fixed boundary conditions Fig. 4a shows good correspondence
456 between the two formulations. There is, however, a small difference for large
457 rotations, at deflections above 250 mm the plate has rotated approximately 14 degrees
458 (0.24 rad). This is a large rotation for this problem. Hence, due to some difference
459 in treating large roations in the two programs, som deviation occurs. Fig. 4b shows
460 the simulations for axially free boundary conditions. A larger difference in the region
461 of gradual thickness plastification as compared to the steel material appears, but the
462 two simulations accounting for large rotations correspond well. Interestingly, running
463 the same problem assuming a linear geometry formulation, one observes that a large
464 rotation effect is already present in the plate for a deflection of 150 mm (comparing
465 with the simulations accounting for this). Hence, assuming a linear formulation leads
466 to a conservative limit load in this bending dominated case.

23
24

25
26

27 Fig. 4. Aluminium (T3) plate in three-point bending. (a) In-plane restrained plate, (b) in-plane unre-
28 strained plate.
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467 Turning to the T4 temper, a very nonlinear stress strain curve must be used. Fig.
468 5a shows that the difference between the two simulations is larger than for the T3

469 material. However, the overall correspondence for this boundary condition is accept-
470 able. For a bending dominated load carrying (Fig. 5b), the difference is significant.
471 Here the effect of the simplified bilinear hardening model for the stress resultant
472 plasticity combined with not accounting for gradual plastification over thickness is
473 accentuated. Hence, for such stress strain curves the stress resultant hardening model
474 must be improved. The linear geometry analysis shows the same conservative
475 response as for the T3 material.

476 4.2. Steel plate in compression

477 A quadratic steel plate of same material as in above subsection is subjected to
478 compression on two opposite edges. The corresponding edges are constrained to have
479 the same axial displacement. The length to thickness ratio is 100. All edges are free
480 to rotate around the axes parallel to the boundaries, with free in-plane displacements,
481 but fixed with respect to out-of-plane deflection. A half-wave sine imperfection is
482 employed with amplitude of 2 mm (0.1 thickness). Fig. 6 shows the comparison
483 between the stress resultant modelling approach and ABAQUS. A significant overpr-
484 ediction is obtained. This may partially explained by Fig. 7b that shows a plot of
485 the simplified yield surface employed herein and the correct linear Ilyushin yield
486 criterion. For a balanced membrane and bending situation the error is at its largest.
487 Fig. 7a depicts the evolution of the out-of-plane deflection at plate center point. At
488 collapse it is of magnitude 15 mm. Assuming a sinusoidal deflection shape, an aver-
489 age central deflection is calculated to be 4.1 mm. This gives a corresponding average
490 bending moment along the midplate that locates the membrane and bending situation
491 as illustrated in Fig. 7b. Hence, the deviation should be at its maximum. Taking the
492 yield stress to be 0.88 of the nominal value (i.e. 352 MPa), the simulation given in
493 Fig. 6 shows acceptable correspondence to the more detailed simulation. This shows
30
31

32
33

34 Fig. 5. Aluminium (T4) plate in three-point bending. (a) In-plane restrained plate, (b) in-plane unre-
35 strained plate.
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38

39
40

41 Fig. 6. Steel plate in compression.

43
44

45
46

47 Fig. 7. Steel plate in compression. (a) Out-of-plane plate deflection, (b) yield surfaces and combination
48 of membrane and bending of compressed plate.

494 that a pragmatic correction of yield stress may provide reasonable limit load values
495 for plates in compression. One may also assume directly such a reduced yield stress,
496 and employ this in screening analyses of compressed plates.

497 4.3. Torsion of a plate with a central hole

498 The present case was first presented by Basar and Itskov [24], and Itskov [25].
499 A rectangular plate is fully constrained with respect to in-plane displacement at two
500 opposite edges (the two other edges are free). Then one end of the plate is subjected
501 to a large torsional rotation. The material data employed is yield stress 0.2 and linear
502 hardening 3.0. The geometry is 5×1×0.05. A circular hole is located at plate center
503 point. Since the plate can not contract due to the boundary conditions, a large mem-
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504 brane force will develop for increasing rotation. Fig. 8a shows the deformed mesh
505 for a rotation of 180 degrees. Fig. 8b shows the corresponding applied end rotation
506 and corresponding torsion moment. The agreement between the present simulation
507 and the one by Basar and Itskov is very good. These two simulations disagree some-
508 what with the ABAQUS simulation for rotations larger than about 90 degrees. This
509 stems from different nonlinear geometry formulations. Running the simulation with
510 the linear geometry option, one observes the significant effect of large rotations. The
511 simulation becomes much too soft. Up to about 20 degrees, however, the simulations
512 agree quite well. So for this case one may say that above this value one has large
513 rotation effects.

514 4.4. Shear buckling of plate girders

515 The following simulations are compared to the test results determined by Tang
516 and Evans [26]. They tested steel plate girders with/without longitudinal stiffeners.
517 The test specimens were of type three-point bending. Figs. 10 and 11 show the
518 geometry of deformed specimens and corresponding simulated shapes. The steel has
519 approximately 200 MPa yield strength, but this differs between web, flange, and
520 stiffener (accounted for in the simulations). Confer [26] for details. Furthermore, the
521 girder length is 2.4 m, height 0.6 m, and web thickness 2.5 mm. Hence, the length
522 to thickness ratio for an unstiffened web panel is about 385.
523 Fig. 9a illustrates the total load versus midpoint deflection of the girder for the
524 test and the two simulations. The case is the unstiffened girder. Some deviation in
525 elastic initial stiffness is observed. This is very typical when comparing numerical
526 simulations with tests; the boundary conditions in the test are usually difficult to
527 achieve exactly in the numerical models. The limit load and post-collapse behaviour
528 is considered most interesting here. The ABAQUS simulation diverged prematurely.
529 The stress resultant approach simulation corresponds quite well to the test result,

50
51

52
53

54 Fig. 8. Large torsion rotation of steel plate with a hole. (a) Deformed mesh at 180 degrees end rotation,
55 (b) response.
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58

59
60

61 Fig. 9. Shear buckling response of steel girders. (a) Unstiffened girder, (b) stiffened girder.
63
64

65
66

67 Fig. 10. Deformed unstiffened girder. (a) Test, (b) simulation.

530 both with respect to limit load and post-collapse behaviour. Comparing the figures
531 in Fig. 10, the buckle shape is very well predicted.
532 Considering the stiffened girder (Fig. 11), Fig. 9b gives the test result and simula-
533 tions. Interestingly, the present formulation captures the correct (unsymmetric) col-
69
70

71
72

73 Fig. 11. Deformed stiffened girder. (a) Test, (b) simulation.
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534 lapse shape, whereas ABAQUS reaches a symmetric collapse mode. This is the
535 reason for the deviation between ABAQUS simulation and test (Fig. 9b). The present
536 formulation yields good correspondence with the test. It should be noted that exactly
537 the same finite element mesh, boundary conditions, and loading were employed in
538 the two simulations. Fig. 11 shows again that the predicted collapse mode agrees
539 well with the observed one.

540 5. Concluding remarks

541 The present investigation gives further insight into the performance of simplified
542 plasticity modelling by means of stress resultants combined with high-performance
543 thin shell finite elements. For materials with a relatively sharp transition from elastic
544 to plastic behaviour and close to linear hardening, the simplified model works well.
545 For hardening behaviour as examplified by the T4 temper aluminium alloy, a refined
546 hardening model must be used in order to obtain reliable results. The response of
547 structures that have a gradual spred of plasticity (in the plane) seems to be simulated
548 with acceptable accuracy. In inelastic buckling of plates the lack of modelling gradual
549 plastification over thickness gives one source of inaccuracy. The non-conservatism
550 in the stress resultant yield surface employed herein gives another. This may, how-
551 ever, be accounted for by using a reduced yield stress accounting for the inaccuracy
552 for combined membrane and bending conditions. If a simplified plasticity model is
553 employed for compression loaded components and structures of critical importance,
554 the simulations should be supplemented with simulations accounting for gradual
555 plastification over thickness.
556 The importance of correct account of terms giving nonlinear geometry stiffness
557 was pointed out by comparison with simulations based on a linear geometry formu-
558 lation. The nonlinear membrane force contribution in tension loaded shells was illus-
559 trated. For plates loaded in bending, the large rotations were of importance for rather
560 small deflections, but assuming a linear geometry formulation provided conservative
561 response. In compression loading the nonlinear geometry of course must be
562 accounted for. The simulations also show that rotation magnitudes to be considerd
563 large differ significantly for different problems.
564 The ability of the present formulation to simulate the buckling modes in shear
565 buckling of plate girders with/without longitudinal stiffeners was very good. For a
566 symmetric structure the present formulation also captured the unsymmetric mode
567 observed in the test. There is a small unsymmetry in the central part of the finite
568 element mesh that may trigger this, but another formulation in a commercial program
569 using the same mesh triggered a symmetric mode.
570 Herein, focus has been on planar shell structures. Curved shells are analysed in
571 [11,12], showing acceptable prediction of response by the modelling presented above.
572 In conclusion, one may state that stress resultant plasticity modelling of thin shells
573 combined with a good description of nonlinear geometry (employing a consistent
574 tangent stiffness) yields efficient computations for shell problems, both in structures
575 subjected to dominating bending, compression, tension, and combinations. In com-
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576 pression, however, the results may be taken as initial results as a basis for screening
577 and importance studies. Furthermore, if there are large uncertainties related to the
578 loads/boundary conditions/material properties/structural geometry, the simplified
579 material model has a model bias that may be acceptable in the overall perspective.
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