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SUMMARY

Due to the very nonlinear behaviour of thin shells under collapse, numerical simu-
lations are subject to challenges. Shell �nite elements are attractive in these sim-
ulations. Rotational degrees of freedom do, however, complicate the solution. In
the present study a co-rotated formulation is employed. The deformation of the
shell is decomposed in to a contribution from large rigid body rotation and a strain
producing term. A triangular assumed strain shell �nite element is used. Hence,
a high performance elastic element is combined with the co-rotated formulation.
In the co-rotated co-ordinate system the plasticity is accounted for by a simplifyed
Ilyushin stress resultant yield surface. The stress update is determined from the
backward Euler di�erence, and a consistent geometrical and material tangent sti�-
ness is derived. Comparison with other published analysis results show that the
present formulation gives acceptable accuracy.
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1. INTRODUCTION

Shell structures are frequently used in marine, mechanical, aerospace, and civil en-
gineering applications due to e�cient load carrying capability relative to material
costs; aestethical reasons also may be a governing factor for using shells. Today there
is a trend to utilise structural capacity as much as possible. This usually involves
allowance for nonlinear material and geometrical behaviour. Two important cases
where this is relevant are �rstly reassessment of the capacity of existing structures
reaching their original service life. Employing more advanced calculations of struc-
tural response, one often can show signi�cant reserve strengths in the actual struc-
ture. This then supports the decision for prolonged service life. Secondly, assessment
of both structural behaviour during damage scenarios, and residual (post-damage)
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strengths, typically requires calculations accounting for nonlinear behaviour. Such
calculations in terms of shell structures are carried out by means of shell �nite el-
ements. In many cases the nonlinear deformations of the shell are governed by
large rigid body translations and rotations, and moderate strain producing motions.
Hence, one simpli�cation in expressing strain is obtained by assuming negligible re-
duction in shell thickness. Further simpli�cations are zero stress in thickness direc-
tion and vanishing out-of-plane shear strain for thin shells (i.e. the structural planar
dimensions are at least one order of magnitude larger than shell thickness). One
complicating factor is the use of rotational degrees of freedom at the shell element
nodes. They are not members of a linear space, hence for �nite rotations special
considerations are necessary. Many representations are possible (Euler parameters,
shell director rotation, co-rotated formulation)1�14. In the present study the co-
rotated formulation is employed. With this, the strain producing deformations and
the (large) rigid body motion is split, and simpli�cations in strain description are
easily carried out with respect to the co-rotated system. This also makes it possible
to utilise high performance �nite elements derived according to linear theory, hence
taking advantage of the large e�orts put into previous research on deriviation of
�nite elements with good convergence characteristics. Herein a triangular assumed
natural deviatoric strain shell �nite element (ANDES) presented by Felippa and
co-workers is used15;16. This is a non-conforming element satisfying the individual
element test by Bergan and Hanssen17. The material nonlinearity accounted for is
due to plasticity. For shell elements two approaches are usual. Either a layer ap-
proach, i.e. integration over shell thickness, utilising a two-dimensional description
of stress at each integration point. This approach may take advantage of the signi�-
cant improvements over the last two decades in updating stress, notably by means of
the backward Euler method. Alternatively, one may use a stress resultant approach.
Then one avoids the integration over shell thickness, but the yield surfaces may be-
come more complicated than in the layer approach. For instance, a layer approach
with Mises material (no discontinuities in the yield surface gradient in the plane
stress space) corresponds to a stress resultant yield surface with corners (Ilyushin).
This may cause numerical problems. Remedies are given by Simo et al18 (see also
Ref.7), however, the implementation is more involved. In the present study this
yield surface is simpli�ed to a hyperellipse, avoiding the corners at the expense of
introducing some inaccuracy in response calculation at inelastic integration points.

The main objectives with the present investigation are: 1) utilise a simpli�ed
plasticity theory (with obvious numerical advantages in stress resultant updating)
2) link this small strain plasticity description to a co-rotated formulation, and 3)
investigate the performance of the ANDES shell element when utilised with plastic
deformations19;20. The paper is organised as follows. First the shell kinematics is
presented. This includes the co-rotated formulation and the deformational (strain
producing) degrees of freedom. Secondly, the force equilibrium for an element is
derived by means of variation of potential energy. Here, some of the transforma-
tions required for a correct equilibrium are presented. Then additional variation of
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the force equilibrium leads to the consistent tangent sti�ness (that is used in the
Newton-Raphson iterations with asymptotic quadratic rate of convergence). The
stress resultant update and its linearization are then presented. Finally, several ex-
amples of shell problems are analysed and compared to other published simulations.

2. SHELL KINEMATICS

Fig.1 shows the two basic coordinate systems that are used. The global coordinate
system is represented by unit vectors I1, I2 and I3. The co-rotated element coordi-
nate system shared by shadow con�guration C0n and con�guration Cn is represented
by unit vectors in

1
, in

2
and in

3
. The unit vectors describing the di�erent coordinate

systems are obtained as follows. i0
1
is aligned with edge 1-2 for the element in C0

con�guration. i0
3
(and in

3
) is always perpendicular to the shell element, and is ob-

tained by the cross product of i0
1
and edge vector 1-3. Unit vector i0

2
is then i0

1
xi0
3
.

The vector in
1
and the shadow element C0n is rotated an angle � relative to the edge

1-2 of the deformed element. � is de�ned by � = �1

3
(�1+�2+�3), and is the least

square �t of the egde angular di�erence between C0n and Cn. This makes the node
numbering invariant of positioning of C0n and Cn elements. Note that the present
approach employs coinciding centroids for C0n and Cn elements. Vectors given in
the local co-rotated element coordinate system are marked with a tilde(~). A vector
x in global coordinates is transformed into a vector ~x in the local coordinate system
0 by

~x = T0x (1)

T0 =

2
664
i0
1

T

i0
2

T

i0
3

T

3
775 (2)

T0 is orthonormal. The rigid body rotation of i0
i
to in

i
is given by

in
1
= R0ni

0

1
(3)

where R0n is the rigid body rotation tensor from position 0 to position n.
Utilising Eqn.(1) the rotation tensor reads

R0n = TT

n
T0 (4)

2.1 Rotations in three-dimensional space

Large rotations in 2D commute. This is not the case for �nite rotations in 3D. A
number of di�erent ways of treating large rotations in three dimensional space are
possible, including rotation vector parameterization and orthogonal matrix param-
eterization (see for instance Ref.11). In this section, the Rodrigues representation
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of the rotation tensor is used. The rotation tensor for a rotation � about an axis
de�ned by the unit vector nT =

h
n1 n2 n3

i
is written11 :

R = I+N sin � +N2 (1� cos �) (5)

N = Spin (n) =

2
64 0 �n3 n2

n3 0 �n1
�n2 n1 0

3
75 (6)

and I is the 3 by 3 identity matrix. Rotation of a vector r0 into r through an angle
� about an axis de�ned by the unit vector n is obtained by:

r = Rr0 (7)

The explicit form of the rotation matrix reads

R(n; �) =

2
64 1 + (1� c)(n21 � 1) (1� c)n1n2 � n3s (1� c)n1n2 + n2s

(1� c)n2n1 + n3s 1 + (1� c)(n22 � 1) (1� c)n2n3 � n1s
(1� c)n3n1 � n2s (1� c)n3n2 + n1s 1 + (1� c)(n23 � 1)

3
75 (8)

where c = cos � and s = sin �. Given R(n; �), the rotation axis n and the rotation
angle � may be found from the following, in which indices (i; j; k) take on the cyclic
permutations of ( 1, 2, 3 ):

di = ni sin � =
1

2
(Rkj �Rjk) (9)

n is a unit vector, hence, sin � =
q
d21 + d22 + d23, and the rotation vector is found by

ni = di= sin �. Thus the rotation vector associated with the rotation tensor is

� = �n =
�

sin �

2
64 d1
d2
d3

3
75 (10)

To avoid numerical di�culties, the fraction �= sin � is evaluated with a truncated
Taylor series about � = 0 for small angles.

2.2 Translation of a point from C0 con�guration to Cn con�guration.

Consider a body in initial con�guration C0 moving to con�guration Cn. During the
movement a point identi�ed by subscript a is followed. The point is rigidly attached
to another point through the eccentricity vector ea. In Fig.1 the di�erent vectors
are denoted by
r0
a

= Position vector for node a in con�guration C0.
rn
a

= Position vector for node a in con�guration Cn.
�r0
a

= Position vector for eccentricity node in con�guration C0.
�rn
a

= Position vector for eccentricity node in con�guration Cn.
e0a; e

n
a = Eccentricity vectors in con�gurations C0 and Cn respectively.
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Omitting a in the remaining equations of this section, the relationships between the
vectors listed above are as follows:

r0 = �r0 + e0

rn = �rn + en = �rn +R0ne
0 (11)

The displacement vector is given as the di�erence between the position vector in
con�guration C0 and the position vector in con�guration Cn.

u = rn � r0 = �rn +R0ne
0 � �r0 � e0 = �u+ (R0n � I) e0 (12)

The displacement vector is split into a deformational displacement vector and a rigid
body displacement vector.

u = ur + ud (13)

Hence:

ur = r0n � r0 (14)

ud = rn � r0n (15)

Introducing subscript c for the arithmetic mean of the coordinates of the points in
the element, the position vectors in initial and shadow element con�gurations may
be written as:

r0 = r0
c
+ x0 (16)

r0n = r0n
c

+ x0n

= r0
c
+ uc +R0nx

0 (17)

where x0 and x0n are the vectors from the centroid of the element to the point
being considered in the C0 con�guration and the C0n con�guration respectively.
Substitution of the expressions above into Eqs 14 and 15 yields:

ud = u�ur = u�(r0n�r0) = u�(r0
c
+uc+R0nx

0�r0
c
�x0) = u� uc � (R0n � I)x0

(18)

2.3 Rotation of an element node from con�guration C0 to Cn

The rotation of an element node as it moves from the initial con�guration C0 to
the deformed con�guration Cn is described by the rotation tensor R. The rotation
tensor is split into a rigid body rotation tensor R0n and a deformational rotation
tensor Rd.

R = RdR0n (19)

Rd = RRT

0n
= RTT

0
Tn (20)

The deformational rotation tensor transformed into the local coordinate system
shared by con�gurations C0n and Cn reads

~Rd = TnRdT
T

n
= TnRT

T

0
TnT

T

n
= TnRT

T

0
(21)



6

2.4 Deformational displacement vector

The position of an element node a with initial coordinates �r0a, is de�ned by the
translational displacement ua and the rotational orientation Ra. Together, the set
(ua;Ra) for a = 1; ::N is the nodal displacement vector v̂ \visible" to the other
elements. v̂ is interpreted as an array of numbers that de�nes the position of the
deformed element. In order to establish the strain energy, and thence the force
vector and tangent sti�ness for an element, the deformational vector for the element
needs to be established. This vector is denoted ~vd and contains translational and
rotational degrees of freedom for each element node ordered as

~vTd =
�
~uT
d1
~�
T

d1 : : : ~u
T
dN
~�
T

dN

�
(22)

N is the number of element nodes for the element being considered. ~�d is extratced
from ~Rd in a similar manner as described by Eqs. 9 and 10.

3. POTENTIAL ENERGY AND FORCE EQUILIBRIUM

In the present section we consider elastic material behaviour. The plastic deforma-
tions are accounted for at element level in a later section. The potential energy for
an element is

Ue =
Z
V

Z
~�
�(~�)d~�dV (23)

The �rst variation of the potential energy is

�� = �(Ue +H) = �R~v
T
d
~fe � �vT fext = 0 (24)

The task is to express the variation of co-rotated deformational DOF with respect
to the global DOF

�Rvd =
@Rvd
@v

�v (25)

The derivation leads to the following connection between internal and external ele-
ment nodal forces

fe = ETTT~PT ~HT~fe = fext (26)

Some detail in this derivation is given in the following19.

3.1 Variation of the deformational displacement

In the global coordinate system, the degrees of freedom at each node are vT =h
uT �T

iT
. � is a representation of a rotation matrix de�ning the orientation of

the node, while u contains the translations of the node. Thus, � is a representation of
a �nite three-dimensional rotation. On variation of v, the variation of the rotations
are no longer in the �nite three-dimensional domain, but rather in the in�nitesimal
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linear domain. Thus, the variation of the rotation matrix is represented by an
in�nitesimal rotation vector. The variatonal degrees of freedom are therefore �vT =h
�uT �!T

iT
. Some of the variations are carried out with respect to the rigid body

rotations. The �nite rigid body rotations are denoted �r, but analogous with the
argumentation above, the in�nitesimal rigid body rotations are denoted �!r. Since
the transformation matrix Tn transforms a vector from a global to a local coordinate
system, and thus only \changes" the orientation of the vector, it depends of the
variation of the rotation of the element. The translation and rotation considered
are those applying to the centre of the element. The result is

�Tn =
@Tn

@~!i
�~!i =

2
64 0 �~!z ��~!y

��~!z 0 �~!x

�~!y ��~!x 0

3
75
2
64 inT

1

inT
2

inT
3

3
75 = �Spin (�~!)Tn (27)

Transformation of Spin (�~!) to global coordinates may be written as

�Tn = �Spin (�~!)Tn = �TnSpin (�!)TnT
T

n
= �TnSpin (�!) (28)

Spin (�!) is anti-symmetric.
The rotation tensor R0n rotates a vector from initial con�guration to the shadow

con�guration, hence the variation of the rotation tensor reads

�R0n = �TT

n
T0 +TT

n
�T0 = �TT

n
T0 = Spin (�!)TT

n
T0 = Spin (�!)R0n (29)

The variation of a vector expressed in an inertial frame can be expressed as

�x = �Rx+ �! � x = �Rx+ Spin (�!)x (30)

where �Rx is the variation of the vector in the co-rotated frame, and �! is the
variation of the inertial rotation of the frame. The variation of the co-rotated defor-
mational displacement vector ud in a co-rotated frame is obtained via the variation
of the inertial deformational displacements with respect to inertial v, and using Eqn.
30 to �nd the variation of the co-rotated deformational displacements with respect
to inertial v. Eqn. 18 states that deformational displacement of an element node a
is

uda = ua � uc � (R0n � I)x0
a
=

NX
b=1

�abub �
NX
b=1

1

N
ub � (R0n � I)x0

a
(31)

uc is the displacement vector for the element centroid, and �ab is the Kronecker
delta, hence

uda =
PN

b=1Pabub � (R0n � I)x0
a

Pab =
�
�ab � 1

N

�
I

(32)

The variation of inertial uda with respect to inertial v is found as

�uda =
NX
b=1

Pab�ub � �R0nx
0

a
(33)
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Using Eqn. 29 �R0nx
0

a
may be written as

�R0nx
0

a
= Spin (�!r)R0nx

0

a
= Spin (�!r)x

0n

a
= �Spin (x0n

a
)�!r

= �Spin (x0n
a
)G�v

(34)

The matrix G connects the variation of the rigid body rotation to the variation of
the visible node displacements:

�!r =
@!r

@vi
�vi = G�v =

NX
b=1

Gb�vb (35)

The matrix G is an element-type dependent matrix. The variation of inertial ud
with respect to inertial v then reads

�uda =
NX
b=1

�h
Pab 0

i
+ Spin

�
x0n
a

�
Gb

�
�vb (36)

�vb is the inertial degrees of freedom for node b. Using the relationship uda =
xn
a
� x0n

a
, we �nd that the variation of the co-rotated deformational displacement

vector with respect to inertial degrees of freedom is given by

�Ruda = �Rx
n

a
� �Rx

0n

a
= �Rx

n

a
(37)

Since xn
a
= R0nx

0

a
+uda, the variation of inertial xn

a
with respect to inertial degrees

of freedom is given by

�xn
a
= �R0nx

0

a
+R0n�x

0

a
+ �uda =

NX
b=1

Pab�ub (38)

Substituting xn
a
for x in Eqn. 30 and solving with respect to �Rx

n

a
yields

�Rx
n

a
=

PN
b=1Pab�ub � Spin (�!r)x

n

a
=
P
N

b=1Pab�ub + Spin (xn
a
)�!r

=
PN

b=1

�h
Pab 0

i
+ Spin (xn

a
)Gb

�
�vb

(39)

Hence, we have the variation of co-rotated deformational displacement vector with
respect to inertial degrees of freedom �Ruda = �Rx

n

a
.

As was the case for co-rotated deformational displacement, we can not �nd the
variation of the co-rotated deformational rotations with respect to inertial degrees
of freedom directly. However, the variation of the co-rotated deformational (�nite)
rotations with respect to the co-rotated deformational (in�nitesimal) rotations was
obtained by Nour-Omid and Rankin9 based on a relationship established by Simo13

and Szwabowicz4:

�R�da =
@�da
@!da

�R!da =
@ (Axial (ln(Rda)))

@!da

�R!da = Ha�R!da (40)
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The matrix Ha is de�ned as

Ha =
@�a
@!

= I� 1

2
Spin (�a) + �Spin (�a)

2 (41)

where

� =
sin(1

2
�a � 1

2
�a cos(

1

2
�a)

�2a sin(
1

2
�a)

and �a =
q
�Ta �a = k�bk (42)

To avoid numerical problems, � is computed from a truncated power series for small
angles. The variation of the co-rotated deformational rotation �R!da with respect
to inertial degrees of freedom is the di�erence between variation of nodal rotation
�!a and of rigid body rotation �!r, both varied with respect to inertial degrees of
freedom.

�R!da = �!a � �!r = �!a � @!r

@vi
�vi = �!a �Ga�va (43)

G is de�ned in Eqn. 35. �R!da may now be written as

�R!da =
NX
b=1

�
�ab
h
0 I

i
�Gb

�
�vb (44)

Introducing Eqn. 44 into Eqn. 40 yields the �nal expression for the variation of
co-rotated deformational rotation with respect to inertial degrees of freedom.

�R�da = Ha

NX
b=1

�
�ab

h
0 I

i
�Gb

�
�vb (45)

For an element with N nodes, the nodal degrees of freedom are ordered as follows

vT =
h
uT
1
�T1 : : : uT

N
�TN

i
(46)

If Eqs. 39 and 45 are ordered accordingly, the �Rvd may be written as

�Rvd = H (I�PT �PR) �v = HP�v (47)

Finally I � PT � PR is abbreviated into P. Matrix P is a nonlinear projector
operator. The details of these matrices are given in Appendix 1.

In order to account for nodal eccentricities, the eccentric degrees of freedom �va
are used instead of the degrees of freedom va. The relationship between ��va and
�va is

�va = Ea��va Ea =

"
I �Spin (en

a
)

0 I

#
(48)

Observe that for all nodes with eccentricity vector ena = 0, Ea reduces to the identity
matrix, thus leaving the elastic degrees of freedom untouched for node a. For an
element with N eccentric nodes, this relationship is expands to

�v =

2
66664
E1 0 : : : 0

0 E2 : : : 0
...

...
. . .

...

0 0 : : : EN

3
77775��v = E��v (49)
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Introducing Eqn. 49 into Eqn. 47 �nally yields the expression for the variation
of co-rotated deformational displacement vector with respect to inertial, eccentric,
degrees of freedom for an element with N nodes:

�Rvd = HPE��v (50)

The variation of the co-rotated deformational displacement vector has now been
found with respect to a set of inertial degrees of freedom. The choice of inertial
system has, however, not been speci�ed. To enable use of already existing linear
elements put in the rotating frame, the inertial system is chosen to be that of the
co-rotated element. Thus, Eqn. 47 is modi�ed to

�R~vd = ~H~P�~v (51)

Since the visible degrees of freedom are de�ned in the global coordinate system, the
variation needed is �Rvd with respect to �v. Taking advantage of the transformation
between local and global coordinate system, and keeping the eccentricity matrix E
in global coordinates, Eqn. 50 may �nally be written as (see also Eqn.26)

�R~vd = ~H~PTn�v = ~H~PTE��v (52)

4. CONSISTENT TANGENT STIFFNESS

The consistent tangent sti�ness is de�ned by the variation of the internal force vector
fe with respect to the visible degrees of freedom, �v:

�fe =
@f

@�v
��v = Kt��v (53)

Using Eqn. 26 for fe, Eqn. 53 yields:

�f = �ETTT~PT ~HT~fe +ET�TT~PT ~HT~fe +ETTT�R~P
T ~HT~fe +ETTT~PT�R ~H

T~fe

+ETTT~PT ~HT�~fe = (KGE +KGR +KGP +KGM +KMG) ��v = KT��v
(54)

The di�erent terms of the tangent sti�ness represent eccentricity geometric sti�ness,
rotational geometric sti�ness, projection geometric sti�ness, moment correction ge-
ometric sti�ness, and material and internal geometric sti�ness, respectively. Some
of the contributions to the tangent sti�ness will be explained brie
y in the following.

The eccentricity geometric sti�ness arises from variation of the eccentricity ma-
trix E, and relates the changes in the internal force vector due to changes in the
eccentric degrees of freedom. Details may be found in Ref.21.

The rotational geometric sti�ness arises from the variation of the transformation
matrix between initial con�guration C0 and shadow con�guration Cn, and re
ects
the variation in the force vector with respect to the rigid body rotation of the ele-
ment. A rigid rotation of a stressed element obviously rotates the stresses, in turn
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causing the internal forces to change direction to preserve equilibrium. Contracted
with the local projected internal force vector ~f = ~PT ~HT~fe, where ~f contains pairs
of internal forces and moments for each node ordered nodewise, the rotational geo-
metric sti�ness may be found from

ET�TT~PT ~HT~fe = ET�TT~f = ET

2
66666664

�TT

n
0 : : : 0 0

0 �TT

n
: : : 0 0

...
...

. . .
...

...

0 0 : : : �TT

n
0

0 0 : : : 0 �TT

n

3
77777775

2
66666664

~n1
~m1

...

~nN

~mN

3
77777775

= �ETTT~Fnm�~!r = �ETTT~Fnm ~GTE��v = KGR��v
(55)

See Appendix 2 for details.

The equilibrium projection geometric sti�ness arises from the variation of the
projector matrix ~PT , and re
ects the variation of the force vector due to variations
in the degrees of freedom. By decomposing the force vector ~HT~fe into unbalanced
forces ~fu = (I� ~PT)~HT~fe and balanced forces ~fb = ~PT ~HT~fe (that is ~HT~fe = ~fu+~fb),
the equilibrium projection geometric term in Eqn. 54 may be written as

ETTT�R~P
T ~HT~fe = �ETTT

�
~GT�R~S

T~fb + �R~P
T~fu

�
(56)

~ST represents the rigid body rotation vectors (see Eqn.84in App.2), causing ~ST~fb =
0, because balanced forces do not produce any work on a structure during rigid body
displacement or rotation. Furthermore, � ~PT~fu can be neglected because it will be
very small when C0n and Cn are close. Eqn. 56 reduces to

ETTT�~PT ~HT~fe = �ETTT ~GT~FT
n
�R~vd = �ETTT ~GT~FT

n
~PTE��v = KGP��v (57)

where

~Fn =

2
66666664

Spin (~n1)
0
...

Spin (~nN)
0

3
77777775

(58)

The moment correction geometric sti�ness arises from variation of the rotation
pseudo-vector Jacobian ~H. Splitting the internal force vector into translational
internal forces ~n and rotational internal moments ~m, the moment correction term
in Eqn. 54 may be written as:

ETTT~PT�R ~H
T~fe = ETTT~PT ~M~PTE��v = KGM��v (59)
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where

~M =

2
66666664

0 0 : : : 0 0

0 ~M1 : : : 0 0
...

...
. . .

...
...

0 0 : : : 0 0

0 0 : : : 0 ~MN

3
77777775

(60)

and ~Ma is de�ned from the relationship9

� ~HT
a ~ma =

@ ~HT
a

@ ~!a

~ma� ~!a = ~Ma� ~!a: (61)

The following expression for the consistent tangent sti�ness is determined:

Kt = KGE +ETTT

�
~KMG + ~KGM + ~KGR + ~KGP

�
TE

= KGE +ETTT

�
~PT ~HT ~Ke

~H~P+ ~PT ~M~P� ~Fnm ~G� ~GT~FT
n
~P
�
TE

(62)

~Ke represents the material sti�ness and may include plasticity e�ects. It connects
the local deformational dof increment with the local force increment:

�~fe = ~Ke�R~vd (63)

and is detailled in the next section.

5. PLASTICITY FORMULATION

The layer approach with integration of a two-dimensional stress state over shell
thickness is well established. Typical number of integration points is 5-7. This
captures �rst �bre yielding. A stress resultants approach avoids this integration.
The stress resultant yield condition derived by Ilyushin may be written

f(~n; ~m) = (
�N

t2
+

4s �Pp
3t3

+
16 �M

t4
)0:5 � �0 = 0 (64)

�N = N2
x +N2

y �NxNy + 3N2
xy

�M = M2
x +M2

y �MxMy + 3M2
xy

�P = NxMx +NyMy � 0:5NxMy � 0:5NyMx + 3NxyMxy

s = P=abs(P ) = �1
For thin shells of Mises material this criterion is quite good. Denoting the integration
point stress resultant vector by � = [~n; ~m]T the yield criterion is rewritten in
quadratic form

f = �TA� � (1 +
H�p
�y

)2 = 0 (65)
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A =

2
4 1

n2
0

I s

2
p
3m0n0

I
s

2
p
3m0n0

I 1

m2

0

I

3
5 �A

�A =

2
64 1 �0:5 0
�0:5 1 0
0 0 3

3
75

m0 = 0:25�yt
2; n0 = �yt

This form is employed with success by Ibrahimbegovic and Frey22, and is based on
work by Matthies23. The o�-diagonal submatrices in A leads to corners in the yield
surface, see Fig.2. If one assumes s = 0, a hyperellipse is obtained as yield surface.
This leads to nonconservative inaccuracies as shown in Fig.2. The maximum error is
approximately 12% for balanced membrane and bending loading. Approaching each
axis, the error vanish. Note that there already is introduced some simpli�cation
in Ilyushin criterion. In the following s=0 is employed. Denoting the incremental
strains (membrane and curvature terms) conjugate to the shell stress resultants by
�� = [��m;��]

T , and utilising an associated 
ow rule, the backward Euler (BE)
update of the plastic strain increment reads

��p;n+1 = ��n+1
@f

@� n+1
(66)

Here n + 1 corresponds to the current load step in the global Newton-Raphson
equilibrium iteration. A work hardening model is used, leading to the following
connection between stress resultant quantities and equivalent scalar quantities:

�Td� = ��d�p ) d�p = 2��d� �� =
p
�TA� (67)

Note that this d�p is not represented by the uniaxial plastic strain increment in a
tensile test. Hence, the hardening modulus H employed is not equal to the slope
of the uniaxial stress-strain curve. One advantage with the simpli�ed yield surface
is that one only have one active yield surface at any time in the stress update.
Simo and Kennedy along with Peng and Cris�eld have, however, employed the
Ilyushin-Shapiro yield surface with the possibility of two active surfaces6;7. In the
elastic predictor plastic corrector BE approach applied herein, the stress update is
obtained by

�n+1 = �trial �C��p;n+1 (68)

�n+1 = �Q
�1
�trial

�Q = [I + 2��CA]

C =

"
tD 0

0 t3

12
D

#

D =
E

1� �2

2
64 1 � 0
� 1 0
0 0 1��

2

3
75
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As �n+1 now only depends on ��, the discrete yield condition fn+1 also does.
Solving for f(��n+1) the stress update is directly obtained from Eqn.68. Solution
of the nonlinear equation f(��n+1) = 0 by Newton-Raphson iterations is simpli�ed

by re-expressing �Q
�1

explicitly by means of an eigenvector matrix E and eigenvalue
matrix � as follows:

(CA)E = E�) CA = E�E�1

) [I + 2��CA]�1 = E[I + 2���]�1E�1 = EQ�1
d E

T

� = diag[�1:::::::�6] � = �A�C

f = �T
trialA

��trial � (1 +
H

�y
(�p;n + 2��

q
�T
trialA

��trial))
2 = 0 (69)

A� = EQ�1
d �AQ

�1
d E

T

The following matrices are applied in the present implementation:

�A = diag[
1

2n20
;
3

2n20
;
3

n20
;

1

2m2
0

;
3

2m2
0

;
3

m2
0

]

�C = t � diag[ 1

1� �
;

1

1 + �
;

1

2(1 + �)
;

t2

12(1� �)
;

t2

12(1 + �)
;

t2

24(1 + �)
]

E =

"
I 0
0 I

#
�E �E =

p
2

2

2
64
1 �1 0
1 1 0

0 0
p
2

3
75

The consistent material tangent for an integration point in the plane is obtained
as follows:

d�n+1 = Cd�n+1 + d�p;n+1 =H
�1d�n+1 + 2A�n+1d�

��p = 2���� �� =
q
�T
n+1A�n+1

dfn+1 = 0) d� =
1

�
2�T

n+1Ad�n+1

� =
2���

1� ���
��

� =
2H

�2y
(�y +H�p;n+1)

) [H�1 +
1

�
ggT ]d�n+1 = d�n+1 H�1 = C�1 + 2��A g = 2A�

d� = [H � HggTH

gTHg + �
]d� = Ctd� (70)

H is expressed in closed form as EQ�1
d E

TC.

6. DISCRETISATION AND NUMERICAL SOLUTION

The �nite element employed herein is triangular with six dof at each node, i.e. a
higher order membrane displacement interpolation (drilling degree of freedom). The
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procedure for construction of the sti�ness is presented by Militello and Felippa15,
but some expressions are listed here for completeness. The element sti�ness is split
into a basic and higher order contribution. The basic sti�ness is derived from a
constant stress in the element doing virtual work on element boundary displacements
described in terms of the visible degrees of freedom:

Kv = (Kb +Kh)v = f (71)

Kb =
1

V
LCeL

T

Z
S

�dT��ndS = �vT
Z
S

NT

d
TndS�� = �vTL�� (72)

Here ��;d;L are the constant stress, element boundary displacements, and nodal
lumping matrix, respectively. With this approach, the individual element test is
satis�ed. The higher order sti�ness may be derived in many ways, e.g. via the free
formulation, assumed natural strain, or assumed natural deviatoric strain (ANDES).
The latter is chosen herein, with local (invisible) dof for bending from curvature
gages at element midsides and from the drilling dof for the membrane part. The
higher order sti�ness may be expressed by

Kh = �QTKdQ Kd =
Z
V

AT

d
CeAddV (73)

� = Ag = AQv = (�A+Ad)Qv (74)

�A = (1=V )
R
V AdV is the average assumed strain, hence Ad is the deviatoric part

applied in the higher order terms. The strain dof g is linked to the visible dof by
Q. � is a scaling factor. Four integration points in the plane is used in establishing
the element sti�ness, located at center and midside points.

The balance equation for internal and external forces for the assembled element
model reads

r(v; �) = f(v)� p(�) = 0 (75)

The external loads are hence written as a function of a time like parameter �.
Advancing from state n to n+1 is carried out by means of a corresponding load in-
crement followed by Newton-Rapshon iterations on the residual. The Riks-Wempner
arc length method (normal plane) is employed in order to traverse limit points24;25.
The iterative corrections to the dof and load increment scaling are given by

�vk+1 = (Kk
n+1)

�1(
@p

@�
��k+1 � rkn+1) (76)

��k+1 = ((K0
n+1)

�1@p

@�
)T (Kk

n+1)
�1rkn+1)=(1 + ((K0

n+1)
�1@p

@�
)T (Kk

n+1)
�1@p

@�
)(77)

The update of the global displacement state is obtained as follows

displacements : v := v +�v (78)

rotations : R := R(�!)R (79)
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7. NUMERICAL SIMULATIONS

In the following, some cases are analysed in order to check the performance of the
simpli�ed plasticity model. Cases with loading dominated by either membrane or
bending conditions should be accurate (cfr Fig.2), whereas cases with combined
load carrying may be nonconservative. Other numerical studies with the present
formulation may be found in Ref. 26.

7.1 Plate with uniformly distributed load

The plate is rectangular with length to width ratio 3 and length to thickness 20. All
of the plate is modelled, with di�erent mesh re�nement. The plate is simply sup-
ported on all egdes. The material is modelled as elastic perfectly plastic with yield
stress 400 MPa. The characteristics of the response is that �ve yield lines develop
in the plate. A good check of the bending performance of the plasticity model is
to compute limit loads for plates. Both upper and lower bound analytic solutions
exist for this case. They are very close, indicating that the analytic solution is accu-
rate. In Fig.3 the applied pressure is normalised by the lower bound limit pressure.
For the displacement levels plotted, the e�ects of nonlinear geometry are negligible.
Considering the three di�erent levels of mesh re�nement, a clear convergence to
the limit load is observed. The accuracy of the simulations is considered good for
this bending dominated case. One should note that even the �nest mesh is rather
coarse in order to capture the yield lines in the plate. Simo and Kennedy6 analysed
a quadratic plate with a concentrated load at center with a mesh of much higher
density than in the present study.

7.2 Pinched cylinder

In this cases a short cylinder (R=300, L=300, thickness=3) bounded by a rigid di-
aphragm at each end is loaded by two concentrated forces at midsection. Symmetry
allows for modelling of only one octant. A yield stress of 24.3, Young's modulus
3000, and hardening modulus 50 (cfr Brank et al5) is employed to model the ma-
terial (isotropic hardening). Note that this hardening modulus is the slope of a
uniaxial stress-strain curve, and is not equal to H used in the stress resultant formu-
lation. Due to the equivalent strain de�nition for this formulation, H is determined
by simulation the tensile test with the stress resultant model. Hence, the uniaxial
hardening modulus is applied indirectly. This case represents a complex shell stress
distribution, with nonproportional membrane and bending moment histories.

Fig.4 depicts several simulations of di�erent mesh re�nements along with two
published simulations. Simo and Kennedy6 employed the complete Ilyushin-Shapiro
yield surface (i.e. multisurface model), whereas Brank et al5 use a Mises material
and seven integration points through thickness. All simulations account for large
rotations. The simulation by Brank et al should be considered the most accurate
(also including out-of-plane shear deformations and change in thickness). For the
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present coarse mesh simulation, several limit points are observed. This is due to the

at shell modelling leading to several local snap throughs. It is observed that for the
�nest mesh, the result is located between the two published results. The single limit
point in the analysis by Brank et al at a de
ection approximately 180 corresponds
to a change in global deformation mode. Similar deformations are obtained with
the meshes used in the present study. One reason for obtaining the limit load at
a vertical displacement of about 160 as opposed to 180 for the accurate analysis,
may be due to not accounting for out-of-plane shear deformations. Since the present
simulations are somewhat sti�er than the one by Brank et al, it is also possible that
the nonconservatism in the yield surface causes this. The simulation with the �nest
mesh is considered acceptable.

7.3 Collapse of the Scordelis-Lo roof

This case is demanding, showing combined membrane and bending load carrying,
and a very nonlinear behaviour. The roof is collapsing under increasing self-weight.
It has a geometry as a part of a cylindrical shell (length=2*7.6m, radius=7.6m, part
of cylinder angle = 80), and is carried by a rigid diaphragm at each end (the two
straight edges are free). One quarter of the roof is modelled. The material has yield
stress 4.2MPa, Young's modulus 21000MPa, and is nonhardening. A reference load
of 4kN=m2 is employed for the gravity. This case has been investigated by several
authors, with the most complete by Peric and Owen10, and Brank et al5. In all these
simulations integration through thickness with a Mises material was employed. Fig.5
illustrates the simulated response and the �nest FE mesh. It is noted that the rapid
load decrease in the present study at about 1m corresponds mostly to the simulation
by Peric and Owen, wheras the analysis by Brank et al shows a somewhat delayed
drop. Comparing the curves denoted 16*16 and 16*16 (12% reduced yield stress),
the e�ect of reducing the yield stress by 12% due to the inaccurate yield surface is
observed. It is also noted that the curve corresponding to the modi�ed yield stress
has a limit load in good resemblance with the published simulations. Furthermore,
the e�ect of re�ning the �nite element mesh 16*16 is clearly seen.

7.4 Axially loaded plate with snap-through

The plate analysed has the same length to width ratio and boundary conditions as
in section 7.1. The load is, however, applied axially. The plate has an initial sinu-
soidal imperfection of amplitude half of the thickness. The material is a structural
steel modelled as isotropic hardening, with yield stress 320MPa and uniaxial hard-
ening modulus 3500MPa. The elastic buckling mode with the lowest eigenvalue has
three sinusoidal half-waves in the longitudinal direction and one in the transversal
direction. Hence, the plate exhibits a snap through behaviour from one two three
longtitudinal waves. This also leads to very nonproportional stress resultant be-
haviour. Fig.6a shows the axial load versus axial displacement. The ordinate axis
is normalised by the Euler load, and the abscissa is normalised by the displacement
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corresponding to the Euler load. The case was analysed by Soreide27 with a 9-noded
triangle/LST element with 3 midside integration points in the plane and 6 integra-
tion points over the thickness. It is noted that the initial elastic sti�ness agrees well
in the three simulations plotted. The collapse load is overpredicted somewhat by
the present analyses. Two explanations may be given. First the lack of capturing
gradual plasti�cation over the thickness with the stress resultant yield surface, sec-
ondly the yield surface is nonconservative. In buckling problems it is known that
accurate modeling of stress and strain over the thickness may be necessary in order
to obtain accurate capacities. However, reducing the yield stress as shown in the
previous section takes the collapse load close to the result by Soreide. In Ref.26
collapse simulation of a shell without this snap-through (i.e. buckling in one mode)
corresponded well with another layer model simulation. Fig.6b illustrates the evolu-
tion of the central vertical displacment versus axial displacement. The snap trough
is clearly seen. The two curves correspond well.

8. CONCLUDING REMARKS

The present investigation has addressed the performance of a very simple stress
resultant plasticity model for thin shell applications in combination with a high
performance triangular �nite element derived by Militello and Felippa. The co-
rotated approach accounts for large rigid body rotations, assuming small strains in
the co-rotated co-ordinate system. A complete consistent tangent sti�ness in terms
of nonlinear geometry and plasticity is derived. In all analyses strict convergence
criteria are used (energy norm 10�14, displacement or internal force norm 10�7),
showing good convergence in the Newton-Rapshon iterations. The simple yield
surface employed is nonconservative (maximum 12%) compared to the traditional
Ilyushin criterion. This inaccuracy occurs in combined membrane and bending, oth-
erwise the error vanish. The advantage of the present approach is, in addition to not
having to integrate over shell thickness, having a smooth yield surface. This is nu-
merically very bene�cial. Although plasticity theory for yield surfaces with corners
exists, more calculations at integration point level are required. Furthermore, the
analyses are more prone to numerical problems. As the inaccuracy in the present
yield criterion is known, it is also possible to do some averaging or scaling of the
size of the surface in order to remedy this. The simplest correction is to reduce the
yield stress with 6%. Then pure membrane or bending loading yields a 6% conser-
vatism, whereas for balanced bending and membrane loading a 6% nonconservatism
is obtained. Putting this model bias into the perspective of uncertainties in external
loads, geometry and material properties, boundary conditions etc, it may be quite
acceptable. Then the present approach is feasible. If the level of uncertainites of
all input quantities is very low, a more accurate approach may be required. The
present study is the �rst to incorporate plasticity in an advanced non-conforming
shell �nite element (ANDES). This seems to work well. However, investigations with
simpler shell elements is under study. Some of the test cases analysed have been
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compared to other published simulation results. Some of them are based on more
detailled plasticity modelling, but of the same level of stringency in the modelling
nonlinear geometry. However, with the co-rotated approach, the separation of rigid
body motion and deformational motion leads to a conceptually simpler exposition
than in the other nonlinear shell theory approaches. As no direct comparison in
term of computer resource usage among the di�erent approaches is carried out, no
conclusion regarding quanti�ed e�ciency may be given here. But this should be
studied in the future.
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Appendix 1: Connection between co-rotational dof and global
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Appendix 2: Consistent geometrical tangent sti�ness contri-

butions

The rotational geometric sti�ness reads
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The following relationships were used in this derivation:
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The equilibrium projection geometric term is written
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~ST represents the rigid body rotation vectors, causing ~ST~fb = 0, because balanced
forces do not produce any work on a structure during rigid body displacment or
rotation. Furthermore, � ~PT~fu can be neglected because it will be very small when
C0n and Cn are close. Eqn. 88 reduces to
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The moment correction term is given by
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Figure captions

Figure 1. Co-rotated formulation.

Figure 2. Ilyushin and simpli�ed plastic interaction surface in MN space.

Figure 3. Simply supported plated subjected to uniform lateral pressure.

Figure 4. Pinched cylinder simulations.

Figure 5. Scordelis-Lo roof collapse simulations.

Figure 6. Axially load plate, a) axial load versus axial displacement, b) transversal
de
ection versus axial displacement.


