
This memo contains project information and preliminary results as a basis for final report(s).
SINTEF accepts no responsibility of this memo and no part of it may be copied.

             M E M O
MEMO CONCERNS

Release Notes
USFOS Version 7-7

DISTRIBUTION

   Members of USFOS user group x

FILE CODE CLASSIFICATION

Open
ELECTRONIC FILE CODE

PROJECT NO.

700030
DATE

2000-04-01
PERSON RESPONSIBLE/AUTHOR

 Tore Holmås
NUMBER OF PAGES

31

Release notes
USFOS 7-7, April 2000

Contents:

1. INTRODUCTION .......................................................................................................................................2

2. CONTENTS OF CD-ROM.........................................................................................................................2

2.1. OVERVIEW.................................................................................................................................................2
2.2. NEW VERSIONS OF THE PROGRAM CODES...................................................................................................2
2.3. MANUAL....................................................................................................................................................4
2.4. EXAMPLES.................................................................................................................................................4

3. EFFICIENT USE OF USFOS ....................................................................................................................5

3.1. GENERAL...................................................................................................................................................5
3.2. ADJUSTING THE UNIX KORN SHELL WINDOW..............................................................................................6
3.3. SOME UNIX COMMANDS.............................................................................................................................9
3.4. EXAMPLE 1, FIXED USFOS INPUT FILE NAMES ..........................................................................................10
3.5. EXAMPLE 2, VARYING USFOS INPUT FILE NAMES .....................................................................................11
3.6. EXAMPLE 3, ASSEMBLING INPUT FILES BEFORE USFOS ANALYSIS ............................................................13
3.7. EXAMPLE 4, USING THE SED EDITOR TO MODIFY MASTER INPUT FILES ...................................................15
3.8. EXAMPLE 5, PROCEDURE FOR ELEMENT REMOVAL (REDUNDANCY ANALYSIS)........................................20

4. NEW FEATURES .....................................................................................................................................23

4.1. GROUP DEFINITION ..................................................................................................................................23
4.2. MODEL REPAIR ........................................................................................................................................24
4.3. JOINT CLASSIFICATION / MSL JOINT CHARACTERISTICS ...........................................................................28

5. NEW/MODIFIED INPUT IDENTIFIERS..............................................................................................31

FO
R

 Y
O

U
R

 A
TT

E
N

TI
O

N

www.sintef.no

Address:
SINTEF group, MARINTEK,
Structural Engineering
Box 4125, Valentinlyst
7450 Trondheim
Norway

Location: Otto Nielsens vei 10

Tel        :+47  7359  5611
Fax       :+47  7359  2660

C
O

M
M

E
N

TS
 A

R
E

 IN
V

IT
ED

AS
 A

G
R

EE
D

FO
R

 Y
O

U
R

 IN
FO

R
M

A
TI

O
N



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

2

1. Introduction

The current version of USFOS (version 7-7, 2000-04-01) is the intermediate release of the 99-
00 user group development period.

The current release with date 2000-04-01 contains following:

� CD-ROM
� Updates of User’s Manual
� Release Notes (this MEMO)

2. Contents of CD-ROM

2.1. Overview

The CD contains documentation, examples and new versions of the program codes, and the
organisation is described in Figure 2.1-1. Both UNIX and NT solutions are collected in the
same CD.

Figure 2.1-1  Contents of CD-ROM

2.2. New versions of the program codes

Under each file folder (f ex “USFOS_for_Windows_NT4.0”), two folders, (bin and etc) are
located. The “bin” folder contains the program code, while the “etc” folder contains set up
files.



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

3

Figure 2.2-1  Program Code located in “bin” folder

Figure 2.2-2  Files in “etc” folder. NT (to the left) and UNIX (to the right)

Installation on UNIX:

� Create a root directory for USFOS, (the new “USFOS_HOME ”  directory)
� Copy the actual “bin” and “etc” directories to USFOS_HOME
� Copy the “Examples_UNIX” and “Document” directories to USFOS_HOME.
� Define the USFOS_HOME variable in the USFOS.cshrc/USFOS.kshrc files

Figure 2.2-3  Contents of "$USFOS_HOME" folder after installation



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

4

Installation on  Windows NT 4.0

� Copy the new “.exe” files located in the “bin” folder to the existing “USFOS_HOME/bin”
folder

� Copy the new “postfos.inca” file located in the “etc” folder to the existing
“USFOS_HOME/etc” folder

� Copy the “Examples_PC” and “Document” folders to the existing USFOS_HOME.

NOTE ! :  If USFOS has never been installed on NT before, please contact SINTEF.

For all systems:

� Copy the file: “USFOS.key” (delivered on a separate diskette) to the actual
“USFOS_HOME/etc” directory.

2.3. Manual

The User’s manual is updated, and (paper) copies of the actual pages are delivered. In
addition, the most important part of the manual, the “Input Description” (USFOS_UM_06) is
available for “on-line” reading using f ex. Adobe Acrobat Reader or any other "PDF readers".

A free "PDF-reader" is available on www.adobe.com .

2.4. Examples

Approx. 50 examples are given under the “Examples” directories. The contents of the UNIX
and PC examples are identical, (the only reason for having two folders is due to computer
compatibility, UNIX and PC represent the files differently).

The input files are located in separate folders, one example per folder, see Figure 2.4-1. In
each folder, following files are found:
Head.fem  : USFOS control parameters



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

5

Stru.fem    : Structure and load description in either SESAM or UFO file format. In some
cases both SESAM and UFO formats are given for the same example, and then
the “stru-file” has a postfix, u for UFO and s for SESAM. Any of the two variants
(stru_u.fem or stru_s.fem) should produce the same results. The USFOS control
parameters are unaffected by the file format used to describe the structure and
loads. (See also Chapter 3).

Figure 2.4-1  Example folders available for UNIX and NT( PC)

Figure 2.4-2  Contents of “Script folder available for UNIX and NT( PC)

3. Efficient use of USFOS

3.1. General

Seldom, only one USFOS analysis is performed for a given problem. The more typical use is
repeated runs due to several load cases, parametric (sensibility) study, model change, etc.

In cases where many USFOS analyses should be performed, well organising of both input and
output files is important. There should be no doubt about “what was the parameters used for



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

6

this particular result plot” and so on. It is highly recommended to not use one input file set,
which is modified over and over again until all cases are run, because:

� Possible confusion about input parameters used
� Difficult to repeat the analyses after a time
� Requires manual editing before each new run, impossible to automate

It’s better to plan and organise the USFOS analysis in a way that makes it possible to,
ultimately, perform hundreds of analyses using only one, (magic) command. One solution
(among several) is using UNIX scripts, and the following sections will describe this solution.

USFOS (even on Windows NT ) runs in a UNIX environment, and all procedures described in
the sections below are running on “all” computer platforms. However, some differences may
occur, (f. ex: C:/TEMP  on PC and  /tmp on standard UNIX).

The next sections will deal with use of UNIX commands typed in from the keyboard in the
“old fashion way”. It’s therefor worth spending some minutes adjusting the UNIX command
prompt window.

3.2. Adjusting the UNIX korn shell window

Before you start using the UNIX korn shell, it’s recommended to modify slightly the layout.
Figure 3.2-1 shows the default window with white text an black background and with size 24
lines / 80 columns). To modify the window, point on the (blue) top frame of the window, and
press the right hand button. The menu Figure 3.2-2 appears.

Figure 3.2-1  The default NutCracker Window layout

Figure 3.2-2  Menu



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

7

Select Properties  and the “select colors” menu shown in Figure 3.2-3 appears.

Select screen text and screen background among the indicated colours. The light grey
background together with black text is a good combination.

Figure 3.2-3  Defining screen- and text colour

The default window has no screen buffer (has no scroll bar), but the buffer sizes in vertical
(number of lines) and horizontal (number of columns) are possible to specify under the layout
menu, see Figure 3.2-4. Type in (or us the arrow) the actual sizes, which here is set to
132/2048. The window size when it pops up is set to 80/40.

When the OK button is pressed, the menu shown in Figure 3.2-5 appears. Select “Modify
Shortcut” to save the settings permanently.

Figure 3.2-4  Defining window layout



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

8

Figure 3.2-5  Selecting permanent modification of the short cut

The UNIX window will from now on look like the one in Figure 3.2-6 with two scroll bars
(and it’s resizable) and a comfortable colour.

Figure 3.2-6  The modified NutC window with scroll bar.



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

9

3.3. Some UNIX commands

The procedures described in the examples below require that the users knows some UNIX
commands, and in the following a brief summary of the commands used in the scripts is
given:

Command /
Argument

Description Use

cp Copy one file into another cp  “from file”   “to file”
mv Rename a file or directory mv “from name”  “to name”
cat dump the content of a file to screen cat  “file”

cat  > dump the content of file_1 into file_2 cat “file1”  >  “file2”
cat   >> dump content of file1 behind existing content of

file 2 (append)
cat “file1”  >>  “file2”

mkdir create a directory (folder) mkdir “directory name”
cd change directory cd “directory name”
.. directory path. (one level up) cd ..

.. /.. directory path. (two levels up) cd .. /..
.. /dir_name directory path (one level up and one down) cd      .. /case2

cp “file1”        “.. /case2/file2”
$NAME Environmental variable with name NAME cp $MASTER/file1     file2

echo $NAME “Show me the content of the environmental
variable whit name NAME”

Will be used in the examples below

sed “Stream Editor” Will be used in the examples below
rm Delete file(s) rm   file1

rm file1  file2 file3 ….
rmdir Delete directory rmdir   directory_name

ls List files ls
ls  *.fem List all files with extension .fem

Table 3.3-1  UNIX commands overview



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

10

3.4. Example 1, Fixed USFOS input file names

The simplest example on a UNIX script (which saves you for tediously typing) is a file with
name go1 containing following:

Table 3.4-1  Content of script file: "go1" with 3 fixed USFOS input files

Explanation:

The variable USFOS_HOME is set during installation of USFOS on both UNIX and NT computers.
It contains the file path of the root of the actual USFOS version. By prefixing the variable name
with $, the contents of the variable name becomes available for use in connection with any
UNIX command.

“$USFOS_HOME/bin/usfos” is the address to the USFOS code, and by adding 15 after the file
name, a workspace of 15 mill is required.

The “<< ENDIN” defines that the usual screen input/output is given between in the lines
between << ENDIN
and
ENDIN
The name “ENDIN” is an arbitrarily chosen name of the label.

In a usual USFOS run, it’s first asked for the control file name prefix, which here is set to
“head”. Further it’s asked for the structural and load files, which here are “stru” and “load”
respectively.
Finally, USFOS asks for the result file prefix, which is set to “res”.

By typing go1 USFOS will start, use the input files head.fem, stru.fem and load.fem, and store
the results in files with prefix: res. All input files must be located on the same directory as the
script file go1 , and results are stored in the same directory.

As USFOS accepts input from one, two or 3 files, it’s possible to leave up to  two file names
blank as shown in Table 3.4-2, where the ‘load’ file is left out.

Table 3.4-2  Content of script file: "go2" with only “head” and “stru” input files

$USFOS_HOME/bin/usfos 15 << ENDIN
head
stru
load
res
ENDIN

$USFOS_HOME/bin/usfos 15 << ENDIN
head
stru

res
ENDIN



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

11

It is possible to access files located on other directories than the directory where the script go
is located /and started from). Table 3.4-3 describes the case where some files are located on
different directories:

Table 3.4-3  Content of script file: "go3" with input files located on different directories

In this case, the control file (head_intact_nw_100yr.fem) is located on same directory as the
script file (and where the script is started from). The structural file (stru.fem) is located in the
directory model (which is located on same level, besides, the current directory), and the file is
named intact_stru.fem.

The load file is located on an other directory (also on same level as the other two) with name
loads, in a file with name nw_100yr.fem

The results are saved on the D: disc, on a directory named temp, and file res_nw_100.raf.

The third variant of the “fixed name script”: go3 indicates a first try to organise an analysis
series involving several versions of the structural file, (f ex intact and damaged), and several
loads (f ex nw_100yr, nw_1000yr, sw_100yr, sw_1000yr, etc).

This leads to the next example, which will give an example on how a slight modified go3
could be used for many different analyses.

3.5. Example 2, Varying USFOS input file names

The “fixed name script”, go3 described above is slight modified. Instead of defining the file
names 100%, some of the file name is substituted by the keywords $1 and $2. It’s possible to
give input  parameters to UNIX scrips, and $1 is parameter no. 1, $2 is parameter no. 2 etc…

Table 3.5-1  Content of script file: "go" with varying input file names

By typing:
go    intact     nw_100yr

the same analysis as described under example 1, go3 will be performed.

$USFOS_HOME/bin/usfos 15 << ENDIN
head_intact_nw_100yr
../model/intact_stru
../loads/nw_100yr
D:/temp/res_intact_nw_100yr
ENDIN

$USFOS_HOME/bin/usfos 15 << ENDIN
head_$1_$2
../model/$1_stru
../loads/$2
D:/temp/res_$1_$2
ENDIN



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

12

The $1 variable will be expanded to intact inside the script, and $2 will be expanded to
nw_100yr, which gives the actual file names:

A script file may not only refer to UNIX commands, it’s possible to refer to other script files as
well. This leads to next level in script programming: defining a top level script, which refers
to user defined script(s).

If f ex. one analysis series should consist of a number of different structural conditions,
different load directions and – conditions, the following script named run_all would run
through all 16 cases without need for any human interference.

Table 3.5-2  Content of level 2 script file: "run_all", which refers to “go”.

Control file : head_intact_nw_100yr
Struct file : ../model/intact_stru
Load file : ../loads/nw_100_yr
Result file : D:/temp/res_intact_nw_100yr

$1 $2

# -----------------------------------------------------
# -- Script for running: - 2 structural conditions, --
# -- - 4 load directions and --
# -- - 2 load conditions --
# -- Totally 2x4x2=16 cases. --
# -----------------------------------------------------
#
# Structure Load
go intact nw_100
go intact sw_100
go intact se_100
go intact ne_100
#
go intact nw_10000
go intact sw_10000
go intact se_10000
go intact ne_10000
#
go damaged nw_100
go damaged sw_100
go damaged se_100
go damaged ne_100
#
go damaged nw_10000
go damaged sw_10000
go damaged se_10000
go damaged ne_10000
# ---------------- End of S ript File ------------------



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

13

3.6. Example 3, Assembling input files before USFOS analysis

In the previous examples, all input files were complete before the script was executed. In may
cases, only a small fraction of the entire input is different from one case to another. Instead of
making lots of copies of near 100% equal files, the key in this example is to show how the
input files could be composed by common information + some special information.

Common information:

� Control file, : head.fem
� Main structure located in : str/Main_Strucutre
� Main load located in : loa/Main_Load

Special information:

� Support Structure : str/Spring_Support_1 and _2
� Special Load : loa/Nodei_Load

Figure 3.6-1  Content of file folder before running script "run_all".

The idea is as follows:
� Use the control file head.fem in all cases.
� Compose a structural file consisting of the common Main_Structure and the special

support, and assemble the complete structural model in the file stru.fem.
� Compose a load file, which should consist of the common load file Main_Load and the

special nodal load, and collect all load info in the file load.fem.
� Create a new, unique directory (below current directory) for each case with informative

name reflecting the actual case.
� Run USFOS an save stru- and load files + result files on the actual directory.
� Create script go for running on case, and run_all for running all 6 combinations

In Table 3.6-1 the script with name go is described in detail as it appears in the example
folder. Lines staring with the sign # is comment lines, and may appear anywhere in the script
file except between << ENDIN and ENDIN. (It is recommended to use comments, both in
scripts and in the USFOS input files).

Firstly, the cp command is used to copy the main structure to the file stru.fem. Next, the
selected support structure is appended to the stru.fem using the cat >> command. Similar is
done for the load file assembly.



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

14

A unique directory for each case is created using the mkdir command, and the directory name
(with prefix Case_) contains information about both support and load. USFOS is started with
15 mill and results are saved in the actual Case directory using the result file prefix res for all
cases (the directory contains information about the different cases). Finally, the actual
stru.fem and load.fem are moved into the actual Case directory using the mv command. (Note
that if only directory name is defined in connection with the mv command, the file name will
be unchanged in the new directory, just moved.)

Table 3.6-1  Content of script file: "go" which assembles input files & runs USFOS

Table 3.6-2  Content of script file: "run_all", which executes the script “go”.

After the script run_all is completed, 6 new file folders (directories) are created, see Figure
3.6-2. All directories contain the actual, assembled input (stru and load) + the result files
(res.*).

# =======================================================
# -- Script for assembling USFOS input and run USFOS --
# -- Usage: go par1 par2 --
# -- par1 : Support Structure --
# -- par2 : Load definition --
#--------------------------------------------------------
# - Copy Main Structure into
# file stru.fem and add
# selected support:
cp str/Main_Structure stru.fem
cat str/$1 >> stru.fem
# - Copy Main Load into
# file load.fem and add
# selected load:
cp loa/Main_Load load.fem
cat loa/$2 >> load.fem
# - Run USFOS and save results
# in unique directories:
#
# .. Create Directory
mkdir Case_$1_$2
$USFOS_HOME/bin/usfos 15 << ENDIN
head
stru
load
Case_$1_$2/res
ENDIN
# .. Move stru.fem and load.fem
# into actual Case_Dir for
# backup purpose.
mv stru.fem Case_$1_$2
mv load.fem Case_$1_$2
#
# ---------------- EOF -------------------------------

# Support Loa
go Spring_Support_1 Node1_Load
go Spring_Support_1 Node3_Load
go Spring_Support_1 Node5_Load
#
go Spring_Support_2 Node1_Load
go Spring_Support_2 Node3_Load
go Spring_Support_2 Node5_Load
#



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

15

Figure 3.6-2  Content of file folder after running script "run_all".

3.7. Example 4, Using the SED editor to modify master input files

In the previous example, the input to USFOS was composed by some common files + special
files, and in all cases the content of the files were pre defined.

In the current example, another, and even more flexible solution is chosen. Instead of
assembling ‘pieces’ of input, the content of the input file(s) are modified prior to the analysis.
As the modification should be performed in a batch run, a batch editor is necessary. The UNIX
shell on both UNIX workstations and the “NutCracker” UNIX shell on Win-NT offers the SED
editor, the “Stream EDitor”.

The operation needed from the stream editor is the “REPLACE” or “SUBSTITUTE”
command, where one character string should be replaced by another.

The (cryptic) UNIX command is wrapped into a file, which here is named substitute, Table
3.7-1, and which is used as follows:

Substitute    “string_1”    “string_2”    FileName

In all connections where string_1 occur on the specified file, it’s replaced by string_2. The
SED editor is case sensitive (differs between upper and lower case characters). Quotes must be
used if blank character(s) occur in the strings.

Table 3.7-1  Script “substitute”, which utilises the SED editor for substituting strings.

sed "1,$ s/$1/$2/g" $3 > subst_string.temp
mv subst_string.temp $3



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

16

With the powerful substitute script available, following operations should be done:

� Create only one master USFOS control file (which should be used for all cases)
� Use one structural file
� Run USFOS wave analysis for 8 different wave/current conditions.

As indicated in Figure 3.7-1, some files are present before the analyses are performed, and
some are created during the analysis (executing the scripts defined in this section).

Figure 3.7-1  Files / Folders before and after running the scripts

Master Headfile, Table 3.7-2.

The file is an ordinary control file for USFOS, but some parameters are not yet set. Instead, the
parameters are represented by arbitrarily chosen key words. In the actual study, the wave
height, direction and period should be varied, and the keyword for the wave height is WAVEH,
the keyword for direction is DIRECT, and the keyword for wave period is PERIOD.

Script file “go”,Table 3.7-3 :

The first operation in the script is creating a directory using the mkdir command, and all 3
parameters (wave- height, direction and period) are included in the directory name.

Next, the nearly complete USFOS control file (named Master_Headfile and located in directory
model) is copied into the file head.fem on current directory. The script for substituting
(named substitute) is used three times for replacing the keywords with the actual parameter
values.

Then USFOS is run, and the same structural file (stru.fem) is used for all cases. Results are
saved on the actual Case directory, and result prefix is res. When USFOS is finished, the
(manipulated) head.fem is moved into the actual Case directory, (see Table 3.7-5 for example
on modified head file).

These files/folders are
present before running
the scripts

These files/folders are
present after running
”run_all”



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

17

Table 3.7-2   “Master_Headfile” with keywords: WAVEH, DIRECT and PERIOD

Table 3.7-3   Script file “go”

HEAD USFOS Extreme Wave. Height: WAVEH , Dir: DIRECT , T : PERIOD
Progressive Collapse Analysis / JACKET model

SINTEF 2000
'
'
' - Define Wave:
'
' Ildcs <type> H Period Direction Phase Surf_Lev Depth
WAVEDATA 2 Stoke WAVEH PERIOD DIRECT 0.0 0.0 100
'
' Ildcs Speed Direction Surf_Lev Depth [Profile]
CURRENT 2 2 DIRECT 0.0 100 0.0 1.0

-20.0 1.0
-100.0 0.0

# =======================================================
# -- Script for assembling USFOS input and run USFOS --
# -- Usage: go Wave_Height Direction Period --
#--------------------------------------------------------
# .. Create Directory
mkdir Case_H=$1_Dir=$2_T=$3
#
# - Copy Master control file
# into the current head
# file:
cp model/Master_Headfile head.fem
# .. Substitute the string
# "WAVEH" with the first
# script parameter ($1)
#
substitute WAVEH $1 head.fem
# .. Similar for par. 2 & 3:
substitute DIRECT $2 head.fem
substitute PERIOD $3 head.fem
# - Run USFOS and save results
# in unique directories:
#
$USFOS_HOME/bin/usfos 15 << ENDIN
head
model/stru

Case_H=$1_Dir=$2_T=$3/res
ENDIN
# .. Move head.fem
# into actual Case_Dir for
# backup purpose.
mv head.fem Case_H=$1_Dir=$2_T=$3
#



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

18

Script file “run_all”  Table 3.7-4

The script file run_all starts go 8 times with different input parameters.

Table 3.7-4   Script file “run_all”

Table 3.7-5   USFOS control file modified by the SED editor.

After all 8 cases are run, 8 new directories are created (see Figure 3.7-1) containing the
modified head.fem and the analysis results. Figure 3.7-2 shows results from one of the 8
analyses, and NOTE that the member imperfections (command CINIDEF) are applied
automatically according to the actual wave load direction (which here is 30°).

# =======================================================
# -- Script for running 8 diffenent USFOS cases --
#--------------------------------------------------------
#
#
# Wave Height Wave/Curr Direction Period
go 20.0 00.0 16.0
go 20.0 30.0 16.0
go 20.0 60.0 16.0
go 20.0 90.0 16.0
#
go 24.0 00.0 20.0
go 24.0 30.0 20.0
go 24.0 60.0 20.0
go 24.0 90.0 20.0
#
# -------------- End of Script run_all ----------------

HEAD USFOS Extreme Wave. Height: 20.0 , Dir: 00.0 , T : 16.0
Progressive Collapse Analysis / JACKET model

SINTEF 2000
'
'
' - Define Wave:
'
' Ildcs <type> H Period Direction Phase Surf_Lev Depth
WAVEDATA 2 Stoke 20.0 16.0 00.0 0.0 0.0 100
'
' Ildcs Speed Direction Surf_Lev Depth [Profile]
CURRENT 2 2 00.0 0.0 100 0.0 1.0

-20.0 1.0
-100.0 0.0
-110.0 0.0



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

19

Figure 3.7-2  Case with H=20m, Dir=30deg and T=16s



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

20

3.8. Example 5, Procedure for element removal (redundancy analysis)

The final example solves following problem:

� Remove the structural members, one by one
� Use the same structural file and control file
� Save the results from the analyses in separate file folders

Figure 3.8-1 shows the content of the example folder before and after running the actual
scripts. The scripts are organised in the etc folder, while the structural model is stored in the
model folder. The content of the script files are described in Table 3.8-1, Table 3.8-2 and
Table 3.8-4.

Figure 3.8-1  Files / Folders before and after running the script

Table 3.8-1   Script file “run_all”

# - Define varible SCRATCH
# (directory for Raf file storing)
export SCRATCH=/tmp/scratch
#
# Local Dir Element to remove
elmdel Elem_01 01
elmdel Elem_02 02
elmdel Elem_03 03
elmdel Elem_04 04
elmdel Elem_05 05
elmdel Elem_06 06
elmdel Elem_07 07
elmdel Elem_08 08
elmdel Elem_09 09
elmdel Elem_10 10
elmdel Elem_11 11
elmdel Elem_12_and_13 12 13
elmdel Elem_05_06_and_12 5 6 12
#
# ------------- End of Run_All -------------------



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

21

The run_postfos script runs POSTFOS  and creates the default history table, using the define-
history and print-history commands. (Similar scripts could be created for extracting nodal
displacements of selected nodes, element forces etc.)

Table 3.8-2   Scrips: “run_usfos” and “run_postfos”

Figure 3.8-2 shows the content of one automatically created file folder (named Elem_01),
which contains the global history created by POSTFOS , the log files from the analysis and the
different input and output files. Table 3.8-3 shows the content of the file nonstru_elem.fem,
(which is created by the script), for two cases: To the left the case where element number 1
should become non structural, and to the right the case where elements 5,6 and 12 should be
removed.

Figure 3.8-2  Files created automatically in folder Elem_01

Table 3.8-3  Automatically created files containing the NONSTRU comand.

$USFOS_HOME/bin/usfos << ENDIN
head
stru
load
$SCRATCH/res
ENDIN

$USFOS_HOME/bin/postfos << ENDIN

$1

define-hist,,,,,,

print-hist,,,,,,,

q
ENDIN

'
' -----------------------------
' -- Nonstructural Members --
' -----------------------------
'
' Type
NONSTRU Element 01
'
' --------- E O F -------------

'
' -----------------------------
' -- Nonstructural Members --
' -----------------------------
'
' Type
NONSTRU Element 5
NONSTRU Element 6
NONSTRU Element 12
'



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

22

Table 3.8-4   Script file “elmdel”

########################################################################
# Author : Tore Holmas, SINTEF Group. Norway #
# Date : 2000-03-18 #
########################################################################
#
if

test "$#" -lt "2"
then

echo ' **************************************************'
echo ' * *'
echo ' * Creates the directory "../Label" , *'
echo ' * creates a copy of usfos control file and *'
echo ' * adds necessary NONSTRU commands. *'
echo ' * *'
echo ' * Assumes structural file on ../model/stru.fem *'
echo ' * *'
echo ' * Results are stored on file "$SCRATCH/res" *'
echo ' * *'
echo ' * Usage: elmdel <Label> elem1 elem2 elem3 .. *'
echo ' * *'
echo ' * 2re, March 2000 *'
echo ' **************************************************'

else
echo " "
echo " Creates directory ../$1 "
mkdir ../$1
cd ../$1
count="1"
for i do

if (test "$count" -gt "1")
then

echo " Processing Element : $i "
if (test "$count" -eq "2")
then

# - Heading :
echo "' " > nonstru_elem.fem
echo "' ----------------------------- " >> nonstru_elem.fem
echo "' -- Nonstructural Members -- " >> nonstru_elem.fem
echo "' ----------------------------- " >> nonstru_elem.fem
echo "' " >> nonstru_elem.fem
echo "' Type " >> nonstru_elem.fem

fi
# - Add to file :

echo " NONSTRU Element $i " >> nonstru_elem.fem
if (test "$count" -eq "$#")
then

# - Tail:
echo "' " >> nonstru_elem.fem
echo "' --------- E O F ------------- " >> nonstru_elem.fem

fi
fi

# - Update counter:
count=`expr $count + 1`
done

# =================================================================
echo " Grabbing USFOS master control file from ../model "
cp ../model/head.fem .
echo " Adds nonstru commands ........... "
cat nonstru_elem.fem >> head.fem
echo " Creates Case identifier : $1 on head.fem "
../etc/substitute CASEID $1 head.fem
echo " Grabbing USFOS stru & load file from ../model "
cp ../model/stru.fem .
cp ../model/load.fem .
echo " and start USFOS "
../etc/run_usfos > run.log
echo " and POSTFOS "
../etc/run_postfos $SCRATCH/res >> run.log
echo " "
echo " Saves Global History on current directory ....... "
echo " "
echo " "
echo " "
echo " "
mv $SCRATCH/res.pri Global_History
mv $SCRATCH/res_status.text .

fi



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

23

4.  New Features

4.1. Group definition

� Groups are introduced in the latest USFOS version (7-7).
� A group is identified by its ID, which is a number (up to 8 digits).
� Elements become “members of” groups, and the same element may participate in several

groups.
� The nodal points, to which the elements are attached, becomes “members of” the actual

group.

The groups are referred to in connection with assigning properties to elements, which will
ease the input (reduce the amount of input lines). In xfos its possible to include/exclude
groups in the structural image (Edit/Clip/Group).

Elements are defined “members of” a group using the GROUPDEF command. The element may
be identified through:

� Element ID
� All elements referring to given material ID’s
� All elements referring go given cross section geometry ID’s
� All elements ‘members of’ existing groups

The actual way of defining the elements is specified using the parameters “Elem”, “Mat”,
“Geo” or “Group” as shown in Table 4.1-1.

Table 4.1-1  Defining element groups using of the GROUPDEF command

If wanted, extra nodes could be defined “members of” an actual group, and the command
“groupnod” is used for this purpose, see  Table 4.1-2. This command is used in connection
with ‘guiding’ loads from non structural members towards (kept) structural nodes.

Table 4.1-2  Assigning (extra) nodes to a group using the GROUPNOD command

' ID Type { ID-List }
GroupDef 888 Elem 10 20 30
GroupDef 88881 Mat 1
GroupDef 88 Geo 5
GroupDef 8 Group 88881 88
'

' Group ID Nodes………
�
GroupNod 888 70 80 90



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

24

4.2. Model repair

Figure 4.2-1  Large Challange for Non Linear Analysis

Seldom, existing models are created with non linear analysis in mind, and substantial work
has to be done before it’s suited for non linear problems. As computers are getting faster, the
model size may increase correspondingly. But, modification of models means in practice
manual work, and the bigger models, the more man hours have to be spent in order to ‘repair’
the linear model. A few years ago, a typical jacket structural model consisted of 500-1000
members. Today the same structure is represented by 5000-10000 members.
An increasing part of the model is non structural members introduced of different reasons in
the linear analysis, see Figure 4.2-1 for typical example.

If possible, the original structural model should become “read only”, and an “intelligent filter”
should transfer the ‘linear’ model into a model accepted by the non linear tool, see Figure
4.2-2.

Figure 4.2-2  Preferred “Model Repair” solution

Often, the original (linear) model will not run at all, the analysis fails due to lack of boundary
conditions, etc. To be able to inspect the structure in XFOS, the use of the dynamic load
procedure is a useful intermediate solution, see Table 4.2-1. In an early modelling stage, the
gravity loading is sufficient load to ensure that all elements are connected, boundary
conditions correct, etc.

Creating an accurate structural model is
time consuming and costly, and it is
therefor normal to use existing models
rather than create new.
Existing models, in most cases, are created
for linear (design) analysis.

Original “Linear” Model
(read only)

“Intelligent” filter Shrinked, “correct”
model accepted by
the non linear tool



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

25

Table 4.2-1  Using dynamic load procedure

Table 4.2-2 shows the group definition used on a ‘real’ example, and it’s here defined 5
groups, which all use geometry ID’s to identify the elements. The general cross sections and
the small diameter pipes (D<300mm) are grouped, because elements referring to those beams
are the typical secondary members, which should be removed from the analysis model.

When the groups are defined, one single NONSTRU command will remove all the “members
of” the actual groups from the analysis model (but loads are kept).

Table 4.2-2  Shrinking model using the GROUPDEF  and NONSTRU commands

If the definition of the bounding surface (the gbound command) is left out for general
sections, default values are used and a warning is printed, see Table 3.5-2. The default values
are shown in the same table.

Dynamic 0.1 0.025 0.1 0.1
LoadHist 1 1
TimeHist 1 Points 0 0 1 1 1000 1

'-----------------------------------------------------------------
' Specify Groups. (Which should become nonstructural)
'-----------------------------------------------------------------
' Type List......
GroupDef 1000 Geom

' - GenBeams
'

10101 10228 10229 10230 10231 10251 10252 10352 15198 15199
16106 16129 16193 16194 16195 16196 16197 16198 16199 16206
16229 16293 16294 16295 16296 16297 16298 16299 16306 16329
16393 16394 16395 16396 16397 16398 16399 16406 16429 16493
16494 16495 16496 16497 16498 16499 16506 16529 16593 16594
16595 16596 16597 16598 16599 16606 16629 16693 16694 16695
16696 16697 16698 16699 17529 17592 17593 17594 17597 17598
17606 17629 17693 17694 17695 17696 17697 17698 17535 17600
17634

'
GroupDef 2000 Geo

' - Pipes 1
'

19107 19108 16202 16302 10253 16102 16402 17502 17602 16502 16602
10102 10104 15110 19106 15186 10106 10105 10107 19105 15111 15106 19104 20110
10113 10360 10111 15185 15112 15107 10109 10112 19103 20095 20096 20094 15114
15113 20097 15191 20099 20098 16607 10117 16407 16307 16207 16107 16507 10365
10243 17607 10367 10118 10114 10116 10119 20111 10122 20124 16213 16212 16214
16109 16110 16209 16114 16210 16112 16113 17509 17510 17511 16614 16610 16612
16613 17512 17612 17613 17614 17610 17513 17514 17609 16609 16314 16409 16410
16313 16309 16310 16312 16412 16512 16513 16514 16510 16413 16414 16509 10121
10120 19102 16617 16616 15189 17517 17516 15115 16516 16416 16417 16316 16317
16517 15108 16216 10123 10125 10126 16217 17617 17616 16117 16116
16218 16119 16318 16118 16618 20085 16619 17619 17618 16519 20122 16419 16418
20112 16518 17620 16120 16420 16320 16520 16620 16220 10127 19101

'
GroupDef 3000 Geo

' - Pipes 2
'

10102 10104 10105 10106 10107 10109 10111 10112 10113
10128 10130 10131 20072 20113 20114 10181 19109
20075 20076 20077 20073 20074 20080 20082 20080
20082 10185 10186 10102 10253 16202 16302 16402 16502 16602
17502 17602 10114 10365 10183

'
GroupDef 16319 Geo 16319
GroupDef 16219 Geo 16219

'
'------------------------------------------------------------------------------
' SPECIFY Groups 1000, 2000 and 3000 NonStructural.
'------------------------------------------------------------------------------
# NonStru Group 1000 2000 3000



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

26

Table 4.2-3 Default “Gbound” data assigned to general beams

When element groups are defined, the contents of the different groups are listed in the .out
file, see Table 4.2-4. In the actual example, group no. 1000 is defined through geometry ID’s,
and the specified ID’s are listed first (similar if the group was defined through material ID’s).

Next, the elements, which are “members of” group no 1000 are listed, and finally, all nodal
point, to which the element are connected to are listed.

Table 4.2-4 Print of group data: geometries, elements and nodes on the .out file.

The example shown in Figure 4.2-3, represents a first stage in a model repair procedure. The
entire structure is still “structural”, but members are grouped as specified above. By using the
Edit/Clip/Group command in xfos, it’s possible to visualise the different groups
(include/exclude). The image to the right shows the full model, and by excluding all groups as
seen in the “Specify Clip Group” menu, the image to the right appears.

If the NONSTRU command in Table 4.2-2 is activated (note that the # passives the command)
only the elements in the image to the right remains structural, but loads are attracted on the
full structure (image to the left).

* Warning. GBOUND input not specified for General Beam: 10101. Default used.
* Warning. GBOUND input not specified for General Beam: 10228. Default used.
* Warning. GBOUND input not specified for General Beam: 10229. Default used.
* Warning. GBOUND input not specified for General Beam: 10230. Default used.

GBOUND 10101 0.8 1.0 0.6 1.0

----- G R O U P D E F I N I T I O N S -----

G R O U P label : "Geometry Group no 1000"
Contains following Geometries:

10101 10228 10229 10230 10231 10251
10252 10352 15198 15199 16106 16129

17535 17600 17634

......elements ............. :
5001 5002 5003 5004 5005 5006
5007 5008 5009 5010 5011 5012
5013 5014 5015 5016 5017 5018
5019 5020 5021 5022 5023 5024
5025 5026 5027 5028 5029 5030
5031 5032 5033 5034 5035 5036

78614 78615 755507 755508 726550 726551
726500 726501

......and nodes ............. :
54531 54834 54935 54930 54535 54536
54837 54938 54936 54538 54539 54841
54942 54939 54542 54543 54844 54950
54943 54550 54856 54957 54557 54558
54859 54961 54958 54561 54562 54863



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

27

Figure 4.2-3  Edit / Clip / Group

Useful USFOS commands for the “model repair” work:

� GROUPDEF : Define element groups
� GROUPNOD : Add nodes to groups (guide loads towards nodes)
� NONSTRU : Define elements nonstructural
� STRUCTEL : Define elements structural (override NONSTRU for some elem.)
� LIN_ELEM : Define element linear elastic (with and without elastic buckling)



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

28

4.3. Joint classification / MSL joint characteristics

This write-up is a preliminary description of the implementation of MSL joint formulation in
USFOS, for use with the β-release of the new feature.

The MSL equations are implemented with ductility limits and “post-rupture” unloading for
tension loading, but with no ductility limits for compression loading.

Joint failure in tension invokes the “FRACTURE” option in USFOS.

Joint utilisation will be visualised by colour fringes in Xfos

The following shows the input required to include MSL joint characteristics in the analysis of
a 2D K-frame.  The input is described in more detail below.

Table 4.3-1   USFOS control input activating MSL joint classification

Comparison between the USFOS analysis and alternative joint models and tests results are
presented in Figure 4.3-2.

' ---------------------------------------------------------------
' Joint properties defined by MSL curves and plasticity formulation:
' ---------------------------------------------------------------
'
JNT_FORM 3 ! 0=beam stub 1=P-delta spring 3=plasticity model
JNTCLASS 1 ! 0=OFF i>0 : interval for (re)classification
'
'
' nodex chord1 chord2 Can Rule CapLevel GammaQf
CHJOINT 7 6 7 0 MSL mean 1.0



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

29

Each time joint (re)classification is performed, the following information is printed to the
.out file.

Table 4.3-2  Print from the MSL routines on the <res>.out file.

Load step 1 / 60

======== J O I N T C L A S S I F I C A T I O N ========

2D K –F R A M E
U S F O S progressive collapse analysis

S I N T E F div of Structural Engineering

USFOS load combination no = 1
Load step no = 60
Load level = 462.683

NODE Capacity Chord Chord Chord
ID rule diameter thickness yield str.

7 MSL mean 1.680E-01 4.500E-03 2.780E+08

Brace Angle Conn Facing Gap Axial MipB MopB
ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf

4 60 97% K 5 .016 4.122E+05 2.584E+04 1.973E+04
3% Y 3.877E+05 2.584E+04 1.973E+04

100% => 4.114E+05 2.584E+04 1.973E+04
.93 .85 .93

5 60 K 4 .016 3.747E+05 2.584E+04 1.973E+04
1.00 1.00 1.00

100% K capacity

100% Y capacity

Combined,
97%K + 3%Y
capacity

Qf factors

Specified capacity

Joint ident.



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

30

Figure 4.3-1  2D K-frame

Figure 4.3-2  2D K-frame  Load – deformation curves

1
Compre

0

100

200

300

400

500

600

700

0 20 40 60 80 100

L
o
a
d
 [
kN

]

Deformation [mm]

Rigid joints
Rigid plastic

ISO / Ultiguide
MSL
Test

0

100

200

300

400

500

0 10 20 30 40

L
o
a
d
 [
kN

]

Deformation [mm]

Rigid plastic
ISO / Ultiguide

MSL



___________________________________________________________________________

________________________________________________________________________________________________
   Release Notes USFOS version 7-7 SINTEF 2000-04-01

31

5. New/modified input identifiers

Since last main release (7-6), following input identifiers are added/extended:

GROUPDEF : Define Element Group
GROUPNOD : Add nodes to Element group
NONSTRU : Nonstructural members Extended input
STRUCTEL : Structrual members (override NONSTRU)
LIN_ELEM : Linear elastic elements
CHJOINT : Extended input


	Introduction
	Contents of CD-ROM
	Overview
	New versions of the program codes
	Manual
	Examples

	Efficient use of usfos
	General
	Adjusting the unix korn shell window
	Some unix commands
	Example 1, Fixed usfos input file names
	Example 2, Varying usfos input file names
	Example 3, Assembling input files before usfos analysis
	Example 4, Using the SED editor to modify master input files
	Example 5, Procedure for element removal (redundancy analysis)

	New Features
	Group definition
	Model repair
	Joint classification / MSL joint characteristics

	New/modified input identifiers

